DOI QR코드

DOI QR Code

Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus

애기뿔소똥구리 유래 CopA3합성 펩타이드의 항염증 효능에 관한 연구

  • Kim, Hyeon-Jeong (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Dong-Hee (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Lee, Joon-Ha (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Lee, Seul-Gi (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Jeong, Hyeon-Guk (Department of Cosmeceutical Science, Daegu Haany University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University)
  • 김현정 (대구한의대학교 화장품약리학과) ;
  • 김동희 (한국한방산업진흥원) ;
  • 이진영 (호서대학교 한방화장품과 학과) ;
  • 황재삼 (국립농업과학원 농업생물부) ;
  • 이준하 (국립농업과학원 농업생물부) ;
  • 이슬기 (대구한의대학교 화장품약리학과) ;
  • 정현국 (대구한의대학교 화장품약리학과) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2012.10.31
  • Accepted : 2013.01.03
  • Published : 2013.01.30

Abstract

The objective of this study was to evaluate the effect of the synthetic CopA3 peptide of Copris tripartitus on skin inflammation. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of RAW 264.7 cells. Tested cells were treated with different concentrations of CopA3 and further cultured for an appropriate time after lipopolyssacharide (LPS) addition. During the entire experimental period, 5, 25, 50, and 100 ${\mu}g/ml$ of CopA3 had no cytotoxicity. At these concentrations, CopA3 inhibited tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). CopA3 also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). CopA3 inhibited the activity of iNOS and COX-2 by 41% and 59%, respectively, at 100 ${\mu}g/ml$. In addition, CopA3 reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results suggest that CopA3 may have significant effects on inflammatory factors and that it may be a potential anti-inflammatory therapeutic agent.

CopA3를 이용하여 피부 염증에 대하여 연구를 하였다. 산화질소와 cytokine의 생산은 면역세포의 대표적인 염증인자이다. 세포는 LPS 처리 후 한 시간 뒤에 CopA3를 처리하였다. 세포 독성이 나타나지 않는 농도인 5, 25, 50, 100 ${\mu}g/ml$를 사용하였다. CopA3는 NO, TNF-${\alpha}$, IL-$1{\beta}$, IL-6, iNOS, COX-2의 생성을 저해 시켰다. iNOS와 COX-2 역시 100 ${\mu}g/ml$의 농도에서 각각 54%, 65%가 저해가 되었다. 게다가 CopA3는 염증성 사이토 카인인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 생성을 감소 시켰다. 이러한 결과로 CopA3는 염증 예방과 치료에 효과적임을 확인 할 수 있었다.

Keywords

References

  1. Aggarwal, B. B. 2003. Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, 745-756. https://doi.org/10.1038/nri1184
  2. Bang, H. S., Lee, J. H., Kwon, O. S., Na, Y. E., Jang, Y. S. and Kim, W. H. 2005. Effects of paracoprid dung beetles (Coleoptera:Scarabaeidae) on the growth of pasture garbage and on the underlying soil. Applied Soil Ecology 29, 165-171. https://doi.org/10.1016/j.apsoil.2004.11.001
  3. Bornemissza, G. F. and Williams, C. H. 1970. An effect of dung beetle activity on plant yield. Pedobiologia 10, 1-7.
  4. Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance. Neuropeptide 37, 355-361. https://doi.org/10.1016/j.npep.2003.09.005
  5. Fincher, G. T. 1981. The potential value of dung beetles in pasture ecosystems. J Ga Entomol Soc 16, 316-333.
  6. Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept DOI: 10.1155/2009/136284.
  7. Higuchi, M., Higashi, N., Taki, H. and Osawa, T. 1990. Cytolytic mechanism of activated macrophases. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the mafor cytolytic mechanism of activated macrophages. J Immunol 144, 1425-1431.
  8. Tizard, I. R. and Schubot, R. M. 2004. Veterinary immunology : An introduction. W. B. Saunders Company. U.S.
  9. Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensing-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept 136.
  10. Kang, B. R., Kim, H., Nam, S. H., Yun, E. Y., Kim, S. R., Ahn, M. Y., Chang, J. S., and Hwang, J. S. 2012. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Reports 45, 85-90. https://doi.org/10.5483/BMBRep.2012.45.2.85
  11. Kang, J. K., Hwang, J. S., Nam, H. J., Ahn, K., Seok, J. H., and Kim, S. K. 2011. The insect peptide Coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 55, 4850-4857. https://doi.org/10.1128/AAC.00177-11
  12. Kim, R. G., Shin, K. M., Chun, S. K., Ji, S. Y., Seo, S. H., Park, H. J., Choi, J. W. and Lee, K. T. 2002. In vitro anti-inflammatory activity of the essential oil from ligularia fischeri var. spiciformis in murine macrophage Raw 264.7 cells. Yakhak Hoeji 46, 343-347.
  13. Lee, Y. S., Kim, H. S., Kim, S. K. and Kim, S. D. 2000. IL-6 mRNA expression in mouse peritoneal macrophages and NIH3T3 fibroblasts in response to Candida albicans. J Microbiol Biotech 10, 9-15.
  14. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. 2003. Inhibition of lipopolysaccharide inducible nitric oxide synthase, TNF-${\alpha}$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. British J Pharmacol 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231
  15. Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137, 1616-1620.
  16. Palmer, R. M., Ashton, D. S. and Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  17. Park, D. S., Yoo, M. A., Xu, M. Z., Yu, H. N., Kim, J. R., Jeong, T. S. and Park, H. Y. 2004. Original articles : Screening of anti-atherogenic substances from insect resources. Korean J Pharmacogn 35, 233-238.
  18. Park, K. T. and Lee, J. S. 1998. Review on insect resources for medical use in kangwon Province. Korean J Apiculture 13, 79-92.
  19. Suh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities.: A shor review. Food Chem Toxicol 40, 1091-1097. https://doi.org/10.1016/S0278-6915(02)00037-6
  20. Tezuka, Y., Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T., Xiong, Q., Hase, K. and Kadota, S. 2001. Screening of chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of zanthoxylum bungeanum. J Ethnopharmacol 77, 209-217. https://doi.org/10.1016/S0378-8741(01)00300-2
  21. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-γ, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316, 209-215.
  22. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a beter therapy. Annals of the rheumatic disease. Ann Rheum Dis 34, 471-478. https://doi.org/10.1136/ard.34.6.471
  23. Won, S. J., Park, H. J. and Lee, K. T. 2008. Inhibition of LPS induced iNOS, COX-2 and cytokines expression by slidroside through the NF-${\kappa}B$ inactivation in RAW 264.7 cells Korean J Pharmacogn 39, 110-117.
  24. Yun, H. J., Heo, S. K., Lee, Y. T., Park, W. H. and Park, S. D. 2008. Anti-inflammatory effect of Evodia Officinalis DODE in mouse macrophage and human vascular endotherial cells. Korean J Herbology 23, 29-38.

Cited by

  1. Anti-Inflammatory Effect of Violapyrones B and C from a Marine-derivedStreptomycessp. vol.21, pp.4, 2015, https://doi.org/10.20307/nps.2015.21.4.251
  2. in RAW 264.7 cells vol.51, pp.4, 2018, https://doi.org/10.4163/jnh.2018.51.4.323