DOI QR코드

DOI QR Code

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle

복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구

  • Choi, Byung Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Kim, Young Min (Dept. of Engine Research, Korea Institute of Machinery & Materials)
  • 최병철 ((사)한국선급 환경플랜트팀) ;
  • 김영민 (한국기계연구원 그린동력연구실)
  • Received : 2012.09.10
  • Accepted : 2012.11.05
  • Published : 2013.02.01

Abstract

The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.

선박의 주 추진용 디젤엔진으로부터 배출되는 배기가스의 열을 회수하는 폐열회수 발전시스템에 대하여, 상대적으로 고온에 상부의 3 변 사이클과 상대적으로 저온부에 하부의 유기 랭킨 사이클이 적용되는 복합 사이클에 대한 열역학적 특성을 조사하였다. 그 결과, 상부와 하부 사이클 사이에 경계온도의 증가에 따라, 총 파괴된 엑서지율(${\sum}\dot{E}_d$) 및 엑서지 손실율($\dot{E}_{out2}$)이 각각 감소되었기 때문에, 시스템의 에너지 및 엑서지 효율이 모두 최대화되었다. 그리고 상부의 체적 팽창비가 크게 감소되었다. 그 경우에 대하여, 부가적인 추진동력으로써 활용되는 폐열회수 발전시스템이 적용된 선박용 디젤엔진의 경우에, 추진 효율은 엔진부하 변동에 따라 기본 엔진에 대비하여 평균적으로 9.17 %가 향상되었다. 이에 대하여, 디젤엔진의 연료 소비율과 이산화탄소 배출률은 각각 평균 8.4 및 8.37 %가 저감되었다.

Keywords

References

  1. Buhaug, O., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Palsson, C., Winebrake, J.J., Wu, W. and Yoshida, K., 2009, Second IMO GHG Study 2009, International Maritime Organization(IMO) London, UK.
  2. IMO, 2011, Chapter 4 Regulations on Energy Efficiency for Ships, MEPC 62/WP. 11/Add. 1/Rev. 1.
  3. MAN Diesel & Turbo, 2005, Thermo Efficiency System for Reduction of Fuel Consumption and $CO_{2}$ Emission.
  4. Choi, B.C. and Kim, Y.M., 2012, "Exhaust-Gas Heat- Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 3, pp. 293-299. https://doi.org/10.3795/KSME-B.2012.36.3.293
  5. Choi, B.C. and Kim, Y.M., 2012, "Exhaust-Gas Heat- Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 6, pp. 593-600. https://doi.org/10.3795/KSME-B.2012.36.6.593
  6. Choi, B.C. and Kim, Y.M., 2012, "Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 9, pp. 937-944. https://doi.org/10.3795/KSME-B.2012.36.9.937
  7. Bryson, M.J., 2007, "The Conversion of Low Grade Heat into Electricity Using the Thermosyphon Rankine Engine and Trilateral Flash Cycle," A Doctoral Dissertation, RMIT University.
  8. Smith, I.K., 1993, "Development of the Trilateral Flash Cycle System Part 1: Fundamental Considerations," Proceedings of Institution of Mechanical Engineers, Part A, Vol. 207, pp. 179-194. https://doi.org/10.1243/PIME_PROC_1993_207_079_02
  9. Fischer, J., 2011, "Comparison of Trilateral Cycles and Organic Rankine Cycles," Energy, Vol. 36, pp. 6208-6219. https://doi.org/10.1016/j.energy.2011.07.041
  10. Kane, M., Larrain, D., Favrat, D. and Allani, Y., 2003, "Small Hybrid Solar Power System," Energy, Vol. 28, pp. 1427-1443. https://doi.org/10.1016/S0360-5442(03)00127-0
  11. Wang, E.H., Zhang, H.G., Zhao, Y., Fan, B.Y., Wu, Y.T. and Mu, Q.H., 2012, "Performance Analysis of a Novel System Combining a Dual Loop Organic Rankine Cycle(ORC) with a Gasoline Engine," Energy, Vol. 43, pp. 385-395. https://doi.org/10.1016/j.energy.2012.04.006
  12. Cengel, Y.A. and Boles, M.A., 2006, Thermodynamics: An Engineering Approach, 5th Ed., McGraw-Hill, pp. 279-605.
  13. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 2007, Fundamentals of Heat and Mass Transfer 6th Ed., John Wiley & Sons, pp. 669-722.
  14. Hyundai Heavy Industries Co., Ltd., 2011, Technical File for Hyundai-Wartsila 12RT-flex96C-B.
  15. IMO, 2008, Amendment to the Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines(NOx Technical Code 2008), MEPC 58/23/Add. 1.
  16. Lemmon, E.W., Huber, M.L. and McLinden, M.O., 2010, REFPROP Ver. 9.0, NIST.
  17. Klein, S.A., Engineering Equation Solver(EES), Prof., Ver. 8.830.
  18. IMO, 2008, Prevention of Air Pollution from Ships- Updated 2000 Study on Greenhouse Gas Emissions from Ships Phase 1 Report, MEPC 58/INF. 6.