DOI QR코드

DOI QR Code

The Cholesterol-Binding Antibiotic Nystatin Induces Expression of Macrophage Inflammatory Protein-1 in Macrophages

  • Baek, Seungil (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Kim, Sun-Mi (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Lee, Sae-A (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Rhim, Byung-Yong (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Eo, Seong-Kug (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Kim, Koanhoi (Department of Pharmacology, School of Medicine, Pusan National University)
  • Received : 2012.10.25
  • Accepted : 2012.12.14
  • Published : 2013.01.31

Abstract

Nystatin, a polyene antifungal antibiotic, is a cholesterol sequestering agent. The antifungal agent alters composition of the plasma membrane of eukaryotic cells, whereas its effects on cells are poorly investigated. In the current study, we investigated the question of whether nystatin was able to induce expression of macrophage inflammatory protein-1 (MIP-1). THP-1 cells rarely express MIP-$1{\alpha}$ and MIP-$1{\beta}$, however, upon exposure to nystatin, significantly elevated expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed in a dose-dependent fashion at the messenger and protein levels. Cellular factors activated by nystatin as well as involved in nystatin-induced expression of MIP-1 proteins were identified in order to understand the molecular mechanisms of action of the anti-fungal agent. Treatment with nystatin resulted in enhanced phosphorylation of Akt, ERK, p38 MAPK, and JNK. Abrogation or significant attenuation of nystatin-induced expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed by treatment with Akt inhibitor IV, LY294002, and SP6001250. Inhibition of ERK or p38MAPK using U0126 and SB202190 did not lead to attenuation of MIP-1 expression. In addition, inhibitors of protein kinase C, such as GF109203X and Ro-318220, also attenuated expression of MIP-1. These results indicate that nystatin is able to activate multiple cellular kinases and, among them, Akt and JNK play primary roles in nystatin-induced expression of MIP-1 proteins.

Keywords

References

  1. Blanpain, C., Buser, R., Power, C. A., Edgerton, M., Buchanan, C., Mack, M., Simmons, G., Clapham, P. R., Parmentier, M. and Proudfoot, A. E. (2001) A chimeric MIP-1alpha/RANTES protein demonstrates the use of different regions of the RANTES protein to bind and activate its receptors. J. Leukoc. Biol. 69, 977-985.
  2. Bolard, J. (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta. 864, 257-304. https://doi.org/10.1016/0304-4157(86)90002-X
  3. Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111-136. https://doi.org/10.1146/annurev.cellbio.14.1.111
  4. Chen, X. and Resh, M. D. (2001) Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization. J. Biol. Chem. 276, 34617-34623. https://doi.org/10.1074/jbc.M103995200
  5. Chi, H., Barry, S. P., Roth, R. J., Wu, J. J., Jones, E. A., Bennett, A. M. and Flavell, R. A. (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. USA 103, 2274-2279. https://doi.org/10.1073/pnas.0510965103
  6. Coutinho, A., Silva, L., Fedorov, A. and Prieto, M. (2004) Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys. J. 87, 3264-3276. https://doi.org/10.1529/biophysj.104.044883
  7. Danforth, J. M., Strieter, R. M., Kunkel, S. L., Arenberg, D. A., VanOtteren, G. M. and Standiford, T. J. (1995) Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin. Immunol. Immunopathol. 74, 77-83. https://doi.org/10.1006/clin.1995.1011
  8. Fessler, M. B., Arndt, P. G., Frasch, S. C., Lieber, J. G., Johnson, C. A., Murphy, R. C., Nick, J. A., Bratton, D. L., Malcolm, K. C. and Worthen, G. S. (2004) Lipid rafts regulate lipopolysaccharide-induced activation of Cdc42 and inflammatory functions of the human neutrophil. J. Biol. Chem. 279, 39989-39998. https://doi.org/10.1074/jbc.M401080200
  9. Fessler, M. B. and Parks, J. S. (2011) Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 187, 1529-1535. https://doi.org/10.4049/jimmunol.1100253
  10. Franke, T. F., Kaplan, D. R., Cantley, L. C. and Toker, A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665-668. https://doi.org/10.1126/science.275.5300.665
  11. Fujii, G., Chang, J. E., Coley, T. and Steere, B. (1997) The formation of amphotericin B ion channels in lipid bilayers. Biochemistry 36, 4959-4968. https://doi.org/10.1021/bi962894z
  12. Kaminska, B. (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  13. Lee, S. A., Kim, S. M., Son, Y. H., Lee, C. W., Chung, S. W., Eo, S. K., Rhim, B. Y. and Kim, K. (2011) Peptidoglycan enhances secretion of monocyte chemoattractants via multiple signaling pathways. Biochem. Biophys. Res. Commun. 408, 132-138. https://doi.org/10.1016/j.bbrc.2011.03.136
  14. Lopez-Bergami, P. and Ronai, Z. (2008) Requirements for PKC-augmented JNK activation by MKK4/7. Int. J. Biochem. Cell Biol. 40, 1055-1064. https://doi.org/10.1016/j.biocel.2007.11.011
  15. Luther, S. A. and Cyster, J. G. (2001) Chemokines as regulators of T cell differentiation. Nat. Immunol. 2, 102-107. https://doi.org/10.1038/84205
  16. Maghazachi, A. A., al-Aoukaty, A. and Schall, T. J. (1994) C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J. Immunol. 153, 4969-4977.
  17. Maurer, M. and von Stebut, E. (2004) Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 36, 1882-1886. https://doi.org/10.1016/j.biocel.2003.10.019
  18. Menten, P., Wuyts, A. and Van Damme, J. (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 13, 455-481. https://doi.org/10.1016/S1359-6101(02)00045-X
  19. Park, H., Go, Y. M., St John, P. L., Maland, M. C., Lisanti, M. P., Abrahamson, D. R. and Jo, H. (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J. Biol. Chem. 273, 32304-32311. https://doi.org/10.1074/jbc.273.48.32304
  20. Preiss, S., Namgaladze, D. and Brune, B. (2007) Critical role for classical PKC in activating Akt by phospholipase A2-modified LDL in monocytic cells. Cardiovasc. Res. 73, 833-840. https://doi.org/10.1016/j.cardiores.2006.12.019
  21. Prevostel, C., Alice, V., Joubert, D. and Parker, P. J. (2000) Protein kinase C(alpha) actively downregulates through caveolae-dependent traffic to an endosomal compartment. J. Cell Sci. 113, 2575-2584.
  22. Resh, M. D. (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1-16. https://doi.org/10.1016/S0167-4889(99)00075-0
  23. Rommel, C., Camps, M. and Ji, H. (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 7, 191-201. https://doi.org/10.1038/nri2036
  24. Roth, S. J., Carr, M. W. and Springer, T. A. (1995) C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-gamma inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur. J. Immunol. 25, 3482-3488. https://doi.org/10.1002/eji.1830251241
  25. Standiford, T. J., Kunkel, S. L., Liebler, J. M., Burdick, M. D., Gilbert, A. R. and Strieter, R. M. (1993) Gene expression of macrophage inflammatory protein-1 alpha from human blood monocytes and alveolar macrophages is inhibited by interleukin-4. Am. J. Respir. Cell Mol. Biol. 9, 192-198. https://doi.org/10.1165/ajrcmb/9.2.192
  26. Uguccioni, M., Mackay, C. R., Ochensberger, B., Loetscher, P., Rhis, S., LaRosa, G. J., Rao, P., Ponath, P. D., Baggiolini, M. and Dahinden, C. A. (1997) High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 100, 1137-1143. https://doi.org/10.1172/JCI119624
  27. Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P. L., Ma, Y., Griendling, K. K. and Alexander, R. W. (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J. Biol. Chem. 276, 48269-48275. https://doi.org/10.1074/jbc.M105901200
  28. Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501. https://doi.org/10.1038/nrc839
  29. Weber, C., Alon, R., Moser, B. and Springer, T. A. (1996) Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J. Cell Biol. 134, 1063-1073. https://doi.org/10.1083/jcb.134.4.1063
  30. Wetzker, R. and Rommel, C. (2004) Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des. 10, 1915-1922. https://doi.org/10.2174/1381612043384402
  31. Zhu, X., Owen, J. S., Wilson, M. D., Li, H., Griffiths, G. L., Thomas, M. J., Hiltbold, E. M., Fessler, M. B. and Parks, J. S. (2010) Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196-3206. https://doi.org/10.1194/jlr.M006486
  32. Ziegler, S. F., Tough, T. W., Franklin, T. L., Armitage, R. J. and Alderson, M. R. (1991) Induction of macrophage inflammatory protein-1 beta gene expression in human monocytes by lipopolysaccharide and IL-7. J. Immunol. 147, 2234-2239.

Cited by

  1. Mangosteen xanthones suppress hepatitis C virus genome replication vol.49, pp.2, 2014, https://doi.org/10.1007/s11262-014-1098-0
  2. Lysine enhances the effect of amphotericin B againstCandida albicans in vitro vol.48, pp.2, 2016, https://doi.org/10.1093/abbs/gmv125
  3. Identification of phosphatidylcholine transfer protein-like in the parasite Entamoeba histolytica vol.107, 2014, https://doi.org/10.1016/j.biochi.2014.09.007
  4. Osmotic Effects Induced by Pore-Forming Agent Nystatin: From Lipid Vesicles to the Cell vol.11, pp.10, 2016, https://doi.org/10.1371/journal.pone.0165098
  5. Benzo[b]tryptanthrin Inhibits MDR1, Topoisomerase Activity, and Reverses Adriamycin Resistance in Breast Cancer Cells vol.10, pp.5, 2015, https://doi.org/10.1002/cmdc.201500068
  6. Effects of Gardeniae Fructus on Cytokines in Mouse Macrophage vol.27, pp.1, 2014, https://doi.org/10.15204/jkobgy2014.27.1.001
  7. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00597
  8. Cholesterol activates the Wnt/PCP-YAP signaling in SOAT1-targeted treatment of colon cancer vol.7, pp.1, 2013, https://doi.org/10.1038/s41420-021-00421-3