DOI QR코드

DOI QR Code

Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

  • Received : 2012.11.29
  • Accepted : 2013.01.15
  • Published : 2013.01.31

Abstract

Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

Keywords

References

  1. Bailey, C. J. and Turner, R. C. (1996) Metformin. N. Engl. J. Med. 334, 574-579. https://doi.org/10.1056/NEJM199602293340906
  2. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  3. Bevan, M. J. (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143,1283-1288. https://doi.org/10.1084/jem.143.5.1283
  4. Brossart, P. and Bevan, M. J. (1997) Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90,1594-1599.
  5. DeFronzo, R. A. (1988) The triumvirate: b-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 37, 667-687. https://doi.org/10.2337/diab.37.6.667
  6. Donath, M. Y. and Shoelson, S. E. (2011) Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98-107. https://doi.org/10.1038/nri2925
  7. Galuska, D., Nolte, L. A., Zierath, J. R. and Wallberg-Henriksson, H. (1994) Effect of metformin on insulin-stimulated glucose transport in isolated skeletal muscle obtained from patients with NIDDM. Diabetologia 37, 826-832. https://doi.org/10.1007/BF00404340
  8. Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. and Amigorena, S. (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621-667. https://doi.org/10.1146/annurev.immunol.20.100301.064828
  9. Han, S., Song, Y., Lee, Y. H., Lee, Y. R., Lee, C. K., Cho, K. and Kim, K. (2005) Macrophage-colony stimulating factor enhances MHC-restricted presentation of exogenous antigen in dendritic cells. Cytokine 32, 187-193. https://doi.org/10.1016/j.cyto.2005.08.002
  10. Hardie, D. G. (2007) AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47,185-210. https://doi.org/10.1146/annurev.pharmtox.47.120505.105304
  11. Hardie, D. G., Carling, D. and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821-855. https://doi.org/10.1146/annurev.biochem.67.1.821
  12. Harding, C. V. (1995) Phagocytic processing of antigens for presentation by MHC molecules. Trends Cell Biol. 5,105-109. https://doi.org/10.1016/S0962-8924(00)88959-X
  13. Harding, C. V., Collins, D. S., Kanagawa, O. and Unanue, E. R. (1991) Liposome-encapsulated antigens engender lysosomal processing for class II MHC presentation and cytosolic processing for class I presentation. J. Immunol. 147, 2860-2863.
  14. Harding, C. V. and Song, R. (1994) Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153, 4925-4933.
  15. Hundal, H. S., Ramlal, T., Reyes, R., Leiter, L. A. and Klip, A. (1992) Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 131,1165-1173. https://doi.org/10.1210/en.131.3.1165
  16. Hundal, R. S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S. E., Schumann, W. C., Petersen, K. F., Landau, B. R. and Shulman, G. I. (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063-2069. https://doi.org/10.2337/diabetes.49.12.2063
  17. Isoda, K., Young, J. L., Zirlik, A., MacFarlane, L. A., Tsuboi, N. and Gerdes, N., Schönbeck U. and Libby P. (2006) Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler. Thromb. Vasc. Biol. 26, 611-617.
  18. Jean-Claude, M., Nicolas, W. and Geneviève, R. (2003) Metformin inhibits monocyte adhesion to endothelial cells and foam cell formation. Br. J. Diabetes Vasc. Dis. 3, 302-310. https://doi.org/10.1177/14746514030030041501
  19. Jeng, C. Y., Sheu, W. H., Fuh, M. M., Chen, Y. D. and Reaven, G. M. (1994) Relationship between hepatic glucose production and fasting glucose concentration in patients with NIDDM. Diabetes 43,1440-1444. https://doi.org/10.2337/diabetes.43.12.1440
  20. Kintscher, U., Hartge, M., Hess, K., Foryst-Ludwig, A., Clemenz, M., Wabitsch, M., Fischer-Posovszky, P., Barth, T. F., Dragun, D., Skurk, T., Hauner, H., Blüher, M., Unger, T., Wolf, A. M., Knippschild, U., Hombach, V. and Marx, N. (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28,1304-1310. https://doi.org/10.1161/ATVBAHA.108.165100
  21. Kota, M., Naoki, T., Maki, Y., Jutaro, T., Hiroshi, M., Jun, M., Tadaatsu, I., Kei, S. and Toshihiro, S. (2009) Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis 206, 434-438. https://doi.org/10.1016/j.atherosclerosis.2009.03.003
  22. Larsson, M., Fonteneau, J. F. and Bhardwaj, N. (2001) Dendritic cells resurrect antigens from dead cells. Trends Immunol. 22,141-148. https://doi.org/10.1016/S1471-4906(01)01860-9
  23. Lee, Y. H., Lee, Y. R., Im, S. A., Park, S. I., Kim, K. H., Gerelchuluun, T., Song, S., Kim, K. and Lee, C. K. (2007) Calcineurin inhibitors block MHC-restricted antigen presentation in vivo. J. Immunol. 179, 5711-5716. https://doi.org/10.4049/jimmunol.179.9.5711
  24. Lee, Y. R., Lee, Y. H., Im, S. A., Yang, I. H., Ahn, G. W., Kim, K. and Lee, J. K. (2010) Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch. Parm. Res. 33, 1859-1866. https://doi.org/10.1007/s12272-010-1119-z
  25. Lee, Y. R., Yang, I. H., Lee, Y. H., Im, S. A., Song, S., Li, H., Han, K., Kim, K., Eo, S. K. and Lee, C. K. (2005) Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105, 3951-3955. https://doi.org/10.1182/blood-2004-10-3927
  26. Lin, H. Z., Yang, S. Q., Chuckaree, C., Kuhajda, F., Ronnet, G. and Diehl, A. M. (2000) Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat. Med. 6, 998-1003. https://doi.org/10.1038/79697
  27. Meijer, K., de Vries, M., Al-Lahham, S., Bruinenberg, M., Weening, D., Dijkstra, M., Kloosterhuis, N., van der Leij, R. J., van der Want, H., Kroesen, B. J., Vonk, R. and Rezaee, F. (2011) Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One. 6, e17154. https://doi.org/10.1371/journal.pone.0017154
  28. Nath, N., Khan, M., Paintlia, M. K., Singh, I., Hoda, M. N. and Giri, S. (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005-8014. https://doi.org/10.4049/jimmunol.0803563
  29. Nicolai, A., Li, M., Kim, D. H., Peterson, S. J., Vanella, L., Positano, V., Gastaldelli, A., Rezzani, R., Rodella, L. F., Drummond, G., Kusmic, C., L'Abbate, A., Kappas, A. and Abraham, N. G. (2009) Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension 53, 508-515. https://doi.org/10.1161/HYPERTENSIONAHA.108.124701
  30. Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., Yoshimura, K., Kadowaki, T. and Nagai, R. (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914-920. https://doi.org/10.1038/nm.1964
  31. Ouchi, N., Parker, J. L., Lugus, J. J. and Walsh, K. (2011) Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85-97. https://doi.org/10.1038/nri2921
  32. Sag, D., Carling, D., Stout, R. D. and Suttles, J. (2008) Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633-8641. https://doi.org/10.4049/jimmunol.181.12.8633
  33. Schafer, G. (1983) Biguanides. A review of history, pharmacodynamics and therapy. Diabetes Metab. 9, 148-163.
  34. Shen, Z., Reznikoff, G., Dranoff, G. and Rock, K. L. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723-2730.
  35. Shin, S., Jung, K. S., Park, Y., Ko, Y. W., Lee, C. K., Cho, K., Ha, N. J. and Kim., K. (2011) Sulforaphane enhances MHC class II-restricted presentation of exogenous antigens. Biomol. Ther. 19, 77-83. https://doi.org/10.4062/biomolther.2011.19.1.077
  36. Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G. and Gerich, J. E. (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550-554. https://doi.org/10.1056/NEJM199508313330903
  37. Stunkard, A. J. (1996) Current views on obesity. Am. J. Med. 100, 230-236. https://doi.org/10.1016/S0002-9343(97)89464-8
  38. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. and Feinglos, M. N. (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37,1163-1167. https://doi.org/10.2337/diabetes.37.9.1163
  39. Weiser, M., Frishman, W. H., Michaelson, M. D. and Abdeen, M. A. (1997) The pharmacologic approach to the treatment of obesity. J. Clin. Pharmacol. 37, 453-473. https://doi.org/10.1002/j.1552-4604.1997.tb04323.x
  40. Wiernsperger, N. F. and Bailey, C. J. (1999) The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs 58, 31-39.
  41. Wu, M. S., Johnston, P., Sheu, W. H., Hollenbeck, C. B., Jeng, C. Y., Goldfine, I. D., Chen, Y. D. and Reaven, G. M. (1990) Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 13, 1-8. https://doi.org/10.2337/diacare.13.1.1

Cited by

  1. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue vol.82, 2016, https://doi.org/10.1016/j.cyto.2016.01.023