References
- Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
- Balkema, A. A. and de Haan, L. (1974). Residual lifetime at great age. The Annals of Probability, 2, 792-804. https://doi.org/10.1214/aop/1176996548
- Behrens, C., Lopes, H. F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling, 4, 227-244. https://doi.org/10.1191/1471082X04st075oa
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
- Castellanos, M. E. and Cabras, A. (2007). A default Bayesian procedures for the generalized Pareto distribution. Journal of Statistical Planning and Inference, 137, 473-483. https://doi.org/10.1016/j.jspi.2006.01.006
- Castillo, E. and Hadi, A. (1997). Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association, 92, 1609-1620. https://doi.org/10.1080/01621459.1997.10473683
- Coles, S. G. and Powell, E. A. (1996). Bayesian methods in extreme value modelling: A review and new developments. International Statistical Review, 64, 119-136. https://doi.org/10.2307/1403426
- Cox, D. R. and Reid, N. (1987). Parametric orthogonality and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
- Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds. Journal of Royal Statistical Society B, 52, 393-442.
- de Zea Bermudez, P. and Amaral Turkman, M. A. (2003). Bayesian approach to parameter estimation of the generalized Pareto distribution. Test, 12, 259-277. https://doi.org/10.1007/BF02595822
- Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling extremal events for insurance and finance, Springer, Berlin.
- Giles, D. E., Feng, H. and Godwin, R. T. (2011). On the bias of the maximum likelihood estimators for the two-parameter Lomax distribution, Econometrics Working Paper EWP1104, Department of Economics, University of Victoria, Canada.
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University, 195-210.
- Ho, K. (2010). A matching prior for extreme quantile estimation of the generalized Pareto distribution. Journal of Statistical Planning and Inference, 140, 1513-1518. https://doi.org/10.1016/j.jspi.2009.12.012
- Hogg, R. V. and Klugman, S. A. (1983). On estimation of long-tailed skewed distributions with actuarial applications. Journal of Econometrics, 23, 91-102. https://doi.org/10.1016/0304-4076(83)90077-5
- Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349. https://doi.org/10.1080/00401706.1987.10488243
- Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions. Journal of the Korean Data & Information Science Society, 22, 1241-1250.
- Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Pickands, J. (1975). Statistical infernces using extreme order statistics. The Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
- Smith, R. L. (1987). Estimating tails of probability distributions. The Annals of Statistics, 15, 1174-1207. https://doi.org/10.1214/aos/1176350499
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.
Cited by
- Noninformative priors for the log-logistic distribution vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.227
- Noninformative priors for the scale parameter in the generalized Pareto distribution vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1521