DOI QR코드

DOI QR Code

Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique

  • Vidya, S. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • Mathai, K.C. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • John, Annamma (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • Solomon, Sam (Dielectric Materials Research Laboratory, Department of Physics, St. John's College) ;
  • Joy, K. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • Thomas, J.K. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College)
  • Received : 2013.06.29
  • Accepted : 2013.03.19
  • Published : 2013.09.25

Abstract

Nanocrystalline Barium niobate ($BaNbO_3$) has been synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveals that $BaNbO_3$ posses a cubic structure with lattice constant $a=4.071{\AA}$. Phase purity and structure of the nano powder are further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nano particles from the Transmission Electron Microscopy is 20 nm. The UV-Vis absorption spectra of the samples are recorded and the calculated average optical band gap is 3.74eV. The sample is sintered at an optimized temperature of $1425^{\circ}C$ for 2h and attained nearly 98% of the theoretical density. The morphology of the sintered pellet is studied with Scanning Electron Microscopy. The dielectric constant and loss factor of a well-sintered $BaNbO_3$ at 5MHz sample is found to be 32.92 and $8.09{\times}10^{-4}$ respectively, at room temperature. The temperature coefficient of dielectric constant was $-179pp/^{\circ}C$. The high dielectric constant, low loss and negative temperature coefficient of dielectric constant makes it a potential candidate for temperature sensitive dielectric applications.

Keywords

References

  1. Cahen, D., Hodes, G., Gratzel, M., Guillemoles, J.F. and Riess, I. (2000), "Nature of photovoltaic action in dye-sensitized solar cells", J. Phy. Chem. B., 104(9), 2053-2059. https://doi.org/10.1021/jp993187t
  2. Casais, M.T., Alonso, J.A., Rasines, I. and Hidalgo, M.A. (1995), "Preparation, neutron structural study and characterization of $BaNbO_{3}$: A Pauli-like metallic perovskite", Mater.Res. Bull., 30(2), 201-208. https://doi.org/10.1016/0025-5408(94)00116-2
  3. Chen, G.H. and Qi, B. (2006), "Barium niobate formation from mechanically activated BaCO3-$Nb_{2}O_{5}$ mixtures", J. Alloys Compd., 425(1-2), 395-398. https://doi.org/10.1016/j.jallcom.2006.01.053
  4. Chen, Z.X., Chen, Y. and Jiang, Y.S. (2002), "Comparative Study of $ABO_{3}$ Perovskite Compounds. 1. $ATiO_{3}$ (A = Ca, Sr, Ba, and Pb) Perovskites", J. Phys. Chem. B., 106(39), 9986-9992. https://doi.org/10.1021/jp013301j
  5. De Araujo, A.C.V., Weber, I.T., Fragoso, W.D. and De Mello Donega, C. (1998), "Luminescence and properties of La2O3-B2O3-M2O5:Ln (M=Nb(V) or Ta(V)) and $La_{2}O_{3}-Nb_{2}O_{5}-B_{2}O_{3}$ glasses", J. Alloy.Compd., 275, 738-741.
  6. Donglin, G., Hao Hua, C.H. and Yi, X. (2013), "Defect-Induced and UV-Irradiation-Enhanced Ferromagnetism in Cubic Barium Niobate", J. Phys. Chem. C, 117 (27), 14281-14288. https://doi.org/10.1021/jp402491w
  7. Ensi Cao, Yongjia Zhang, Lin Ju, Lihui Sun and Hongwei Qin, Jifan Hu. (2012), "The investigation of room temperature ferromagnetism in (1 0 0) oriented $BaNb_{2}O_{6}$ PLD films on $LaAlO_{3}$ (1 0 0) substrate", Appl. Surf. Sci., 258(8), 3795-3799. https://doi.org/10.1016/j.apsusc.2011.12.031
  8. Fateley, W.G., Dollish, F.R., Mc Devitt, N.T. and Benthy, F.F. (1972), Infrared& Raman selection Rules for molecules &Lattice vibrations: The Correlation Method, Wiley Interscience, New York.
  9. Fragoso, W.D., De Mello Donega, C., Longo, R.L., (2005) "A structural model of $La_{2}O_{3}-Nb_{2}O_{5}-B_{2}O_{3}$ glasses based upon infrared and luminescence spectroscopy and quantum chemical calculations", J Non-Cryst Solids, 351, 3121-3126. https://doi.org/10.1016/j.jnoncrysol.2005.07.031
  10. Gasparov, V.A., Ermolov, S.N., Strukova, G.K., Sidorov, N.S., Khassanov, S.S., (2001),"Superconducting and anomalous electron transport properties and electronic structure of $BaNbO_{3-x}$ and $Ba_{2}Nb_{5}O_{x}$ films", Phys. Rev. B., 63(17), 174512-174521. https://doi.org/10.1103/PhysRevB.63.174512
  11. Gudiksen, M.S., Wang, J.F., Liebe, C.M. (2002), "Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires", J. Phys. Chem. B., 106(16), 4036-4039. https://doi.org/10.1021/jp014392n
  12. Han, D.F., Zhang, Q.M., Luo, J., Tang, Q., Dun, J. (2012), "Optimization ofenergy storage density in $ANb_{2}O_{6}-NaNbO_{3}-SiO_{2}$ (A=(1-x)Pb, xSr) nanostructured glass-ceramic dielectrics", Ceram. Int., doi.org/10.1016/j.ceramint.2012.04.087.
  13. Iles, N., Kellou, A., Khodja, K.D., Amrani, B., Lemoigno, F., Bourbie, D. and Aourag, H. (2007), "Atomistic study of structural, elastic, electronic and thermal properties of perovskites $Ba(Ti,Zr,Nb)O_{3}$", Comp. Mater. Sci., 39(4),896-902. https://doi.org/10.1016/j.commatsci.2006.10.012
  14. Kinoshita, T., Senna, M., Doshida, Y. and Kishi, H. (2012), "Synthesis of size controlled phase pure KNbO3 fine particles via a solid-state route from a core-shell structured precursor", Ceram .Int., 38(3), 1897-1904. https://doi.org/10.1016/j.ceramint.2011.10.018
  15. Kurmaev, E.Z., Moewes, A., Bureev, O.G., Nekrasov, I.A., Cherkashenko, V.M., Korotin, M.A., Ederer, D. L., (2002) "Electronic structure of niobium oxides" J Alloy Compd, 347 213-218 https://doi.org/10.1016/S0925-8388(02)00765-X
  16. Koduri, R. and Chandramouli, K. (2012),"Ferroelectric and pyroelectric properties of $Ce^{3+}$ modified tetragonal tungsten bronze structured lead barium niobate-55 ceramics", J. Phys. Chem. Solid., 73(9), 1061-1065. https://doi.org/10.1016/j.jpcs.2012.04.017
  17. Mathai, K.C. Vidya, S. Solomon, S. and Thomas, J.K. (2013), "Variation in Optical, dielectric and sintering behavior of nanocrystalline $NdBa_{2}NbO_{6}$", Adv. Mater. Res., An Intl Journal, 2 No. 2.
  18. Molina, P., Martin Rodriguez, E., Jaque, D., Bausa, L.E., Garcia Sole, J., Huaijin Zhang , Wenlan Gao , Jiyang Wang, MinhuaJiang. (2009), "Optical spectroscopy of neodymium-doped calcium barium niobate ferroelectric crystals", J. Lumin., 129(12), 1658-1660. https://doi.org/10.1016/j.jlumin.2009.04.097
  19. Nair, V.M., Jose, R., Raju, K., Wariar and P.R.S., (2013), "Optimization of citrate complex combustion for synthesis of transition metal oxide nanostructures "J Alloy. Compds., 552, 180-185. https://doi.org/10.1016/j.jallcom.2012.10.030
  20. Nattaya Tawichai, Waraporn Sittiyot, Sukum Eitssayeam, Kamonpan Pengpat, Tawee Tunkasiri, Gobwute Rujijanagul. (2012), "Preparation and dielectric properties of barium iron niobate by molten-salt synthesis" Ceram. Int., 38S(1), S121-S124.
  21. Oprea, I.I.,Voelker, U., Niemer, A., Pankrath, R., Podlozhenov, S. and Betzler, K. (2009), "Influence of erbium doping on phase transition and optical properties of strontium barium niobate" Optl. Mater., 32(1) , 30-34. https://doi.org/10.1016/j.optmat.2009.05.015
  22. Patil, R.C., Radhakrishnan, S., Sushama, P. and Vijaymohanan, K. (2001), "Piezoresistivity of conducting polyaniline/BaTiO3 composites" , J. Mater. Res., 16(07), 1982-1988. https://doi.org/10.1557/JMR.2001.0271
  23. Ross ,S.D. (1972), Inorganic Infrared and Raman Spectra, Mc Graw Hill Book Company, London,.
  24. Saha, S.K. and Pramanik (1997),"Synthesis of nanophase PLZT (12/40/60) powder by PVA-solution technique", Nanostruct. Mater., 8(1), 29-36. https://doi.org/10.1016/S0965-9773(97)00062-7
  25. Strukova, G.K., Kedrov, V.V., Zverev, V.N., Khasanov, S.S., Ovchinnikov, I.M., Batov, I.E. and Gasparov, V.A. (1997), "On the synthesis and the electric and magnetic properties of superconducting barium-niobium-oxide compounds", Physica C., 291 (3-4), 207-212. https://doi.org/10.1016/S0921-4534(97)01712-7
  26. Ghosh, S., Dasgupta, S., Sen, A. and Maiti, H.S. (2007), "Synthesis of barium titanate nanopowder by a soft chemical process",Mater. Lett., 61(2), 538-541. https://doi.org/10.1016/j.matlet.2006.05.006
  27. Tauc, J. (1974), Amorphous and liquid semiconductors,Plenum, New York.
  28. Tinte, S., Iniguez, J., Rabe, K.M. and Vanderbilt, D. (2003), "Quantitative analysis of the first-principles effective Hamiltonian approach to ferroelectric perovskites", Phys.l Rev. B., 67(6), 64106-64114. https://doi.org/10.1103/PhysRevB.67.064106
  29. Vanderbilt, D. (1997), "First-principles based modelling of ferroelectrics", Curr. Opin. Solid St. M., 2(6), 701-705. https://doi.org/10.1016/S1359-0286(97)80013-7
  30. Venigalla, S. (2001),"Barium titanate advanced materials and powders", Am. Ceram. Soc. Bull., 6, 63-64.
  31. Vidya, S., John, A., Solomon, S. and Thomas, J.K. (2012), "Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method", Adv. Mater. Res. An Intl. Journal, 1, 3
  32. Wariar, P.R.S., Kumar, V.R., Nair, V.M., Yusoff, M.M., Jose R. and Koshy J. (2012), "Nanostructured $A_{2}(RE,B)O_{6}$ (A = Ba, Sr; RE = Rare-Earth; B = Sb, Zr) Perovskite Ceramics and their Potential Applications in Microwave and Superconducting Electronics", Adv.Mater.Res.,545, 27-31. https://doi.org/10.4028/www.scientific.net/AMR.545.27
  33. Wu, S.Y., Chen, X.M. and Liu, X.Q. (2008), "Hydrothermal derived barium niobate ultra-fine powders and nanowires", J. Alloy .Compd., 453(1-2), 463-469. https://doi.org/10.1016/j.jallcom.2006.11.117
  34. Xuming, P., Jinhao, Q., Kongjun, Z. and Jianzhou, D. (2012) "(K, Na)$NbO_{3}$-based lead-free piezoelectric ceramics manufactured by two-step sintering", Ceram.Int., 38(3), 2521-2527 https://doi.org/10.1016/j.ceramint.2011.11.022
  35. Yu, D.P., Bubendorff, J.L., Zhou, J.F., Wang, Y.L. and Troyon, M. (2002), "Localized cathodoluminescence investigation on single $Ga_{2}O_{3}$ nanoribbon/nanowire", Solid State Commun., 124(10-11), 417-421. https://doi.org/10.1016/S0038-1098(02)00539-2
  36. Zhang, M., Hu, C., Liu, H., Xiong, Y. and Zhang, Z. (2009), "A rapid-response humidity sensor based on $BaNbO_{3}$ nanocrystals", Sensor. Actuat. B.Chem., 136(1), 128-132. https://doi.org/10.1016/j.snb.2008.09.021

Cited by

  1. Synthesis and characterization of novel reduced graphene oxide supported barium niobate (RGOBN) nanocomposite with enhanced ferroelectric properties and thermal stability vol.29, pp.22, 2018, https://doi.org/10.1007/s10854-018-0049-2