DOI QR코드

DOI QR Code

In Situ Solute Migration Experiments in Fractured Rock at KURT: Installation of Experimental System and In Situ Solute Migration Experiments

KURT 암반 단열에서 현장 용질이동 실험: 실험 장치 설치 및 현장 용질 이동 실험

  • Received : 2013.06.11
  • Accepted : 2013.07.26
  • Published : 2013.09.30

Abstract

An in situ solute migration system was designed and installed in KAERI Underground Research Tunnel (KURT) constructed in the site of Korea Atomic Energy Research Institute (KAERI) in order to investigate the migration and retardation of non-sorbing and sorbing tracers through a rock fracture. The system is composed of three main parts including injection, extraction, and data treatment. For the selection of a water-conducting fracture, boreholes were drilled. The fractures in the drilled boreholes were investigated using borehole image analysis using borehole image processing system (BIPS). The results of BIPS analysis showed that borehole YH 3-1 and YH 3-2 were connected each other. Moreover, hydraulic tests were carried out to determine the test section with connectivity for the in situ experiments. The in situ solute migration experiments were accomplished to understand the migration of solutes through fractures in KURT using non-sorbing tracers which were fluorescein sodium, eosin-B, bromide and sorbing tracers which were rubidium, nickel, zirconium, and samarium.

암반 단열을 통한 용질의 이동 및 지연 특성 규명을 위한 현장 실험을 수행하기 위하여 현장 용질이동 실험 장치를 설계하여 한국원자력연구원 부지 내에 건설된 지하연구시설(KAERI Underground Research Tunnel, KURT)에 설치하였다. 현장 용질이동 실험 장치를 주입부, 회수부 그리고, 자료처리부 등 3개의 주요 부분으로 구성하였다. 지하수 유동이 있는 단열을 선정하기 위하여 총 5개의 공을 시추하였으며, BIPS(Borehole Image Processing System)를 이용한 시추공 영상 분석을 통하여 시추공의 단열 특성을 조사하였다. 시추공 영상 분석 결과를 통하여 단열 연결성 분석을 수행한 결과, YH 3-1 시추공과 YH3-2 시추공에 존재하는 단열이 상호 연결성이 높은 것으로 확인되었다. 수리시험을 통하여 현장 실험 대상 단열을 선정하였으며, 용질이동을 관찰하기 위하여 플루오레신, 에오신, 브롬 등의 비수착성 추적자 및 루비듐, 니켈, 사마륨, 지르코늄 등의 수착성 추적자를 이용하여 현장 용질이동 실험을 수행하였다.

Keywords

References

  1. H.J. Choi, M. Lee and J.Y. Lee, "Preliminary Conceptual Design of a Geological Disposal System for High-Level Wastes from the Pyroprocessing of PWR Spent Fuels", Nucl. Eng. Design, 241, pp. 3348-3356 (2011). https://doi.org/10.1016/j.nucengdes.2011.06.013
  2. P.E. Mariner, J.H. Lee, E.L. Hardin, F.D. Hansen, G.A. Freeze, A.S. Lord, B. Goldstein and R.H. Price, "Granite Disposal of U.S. High-Level Radioactive Waste", SAND2011-6203, Sandia, California (2011).
  3. J.I. Kim, "Significance of Actinide Chemistry for the Long Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), pp. 459-482 (2006).
  4. M.H. Baik, S.Y. Lee, K.K. Lee, S.S. Kim, C.K. Park and J.W. Choi, "Review and Compilation of Data on Radionuclide Migration and Retardation for the Performance Assessment of a HLW Repository in Korea", Nucl. Eng. Technol., 40(7), pp. 63-76 (2008). https://doi.org/10.5516/NET.2008.40.7.593
  5. T.T. Vandergraaf, "Radionuclide Migration Experiments under Laboratory Conditions", Geophys. Res. Lett., 22, pp. 1409-1412 (1995). https://doi.org/10.1029/95GL01492
  6. T.T. Vandergraaf, D.J. Drew, D. Archambault and K.V. Ticknor, "Transport of Radionuclides in Natural Fractures: Some Aspects of Laboratory Migration Experiments", J. Contam. Hydrol., 26, pp. 83-95 (1997). https://doi.org/10.1016/S0169-7722(96)00060-5
  7. P. Vejmelka, Th. Fanghaenel, B. Kienzler, E. Korthaus and J. Roemer, W. Schuessler and R. Artinger, "Sorption and Migration of Radionuclides in Granite (HRL ASPO, Sweden), FZKA 6488, FZK, Karlsruhe (2000).
  8. Y. Sakamoto, S. Nagao, H. Ogawa1 and R.R. Rao, "The Migration Behavior of Np(V) in Sandy Soil and Granite Media in the Presence of Humic Substances", Radiochim. Acta, 88, pp. 651-656 (2000).
  9. P. Vilks and M.H. Baik, "Laboratory Migration Experiments with Radionuclides and Natural Colloids in a Granite Fracture", J. Contam. Hydrol., 47, pp. 197-210 (2001). https://doi.org/10.1016/S0169-7722(00)00149-2
  10. M. Li, T. Wang and S. Teng, "Experimental and Numerical Investigations of Effect of Column Length on Retardation Factor Determination: A Case Study of Cesium Transport in Crushed Granite", J. Hazard. Mat., 162, pp. 530-535 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.076
  11. S. Palagyi, K.S tamberg and H. Vodičkova, "Transport and Sorption of 85Sr and 125I in Crushed Crystalline Rocks under Dynamic Flow Conditions", J Radioanal. Nucl. Chem., 283, pp. 629-636 (2010). https://doi.org/10.1007/s10967-009-0393-z
  12. M.H. Baik, S.Y. Lee and W.J. Shon, "Retention of Uranium(VI) by Laumontite, a Fracture-Filling Material of Granite", J. Radioanal. Nucl. Chem., 280, pp. 69-77 (2009). https://doi.org/10.1007/s10967-008-7446-6
  13. N. Albarran, T. Missana, M. Garcia-Gutierrez, U. Alonso and M. Mingarro, "Strontium Migration in a Crystalline Medium: Effects of the Presence of Bentonite Colloids", J. Contam. Hydrol., 122, pp. 76-85 (2011). https://doi.org/10.1016/j.jconhyd.2010.11.005
  14. M.H. Baik, J.K. Lee and J.W. Choi, "Research Status on the Radionuclide and Colloid Migration in Underground Research Facilities", J. Korean Radioact. Waste Soc., 7(4), pp. 243-253 (2009).
  15. A. Sawada, M. Uchida, M. Shimo, H. Yamamoto, H. Takahara and T.W. Doe, "Non-Sorbing Tracer Migration Experiments in Fractured Rock at the Kamaishi Mine, Northeast Japan", Eng. Geol., 56, pp. 75-96 (2000). https://doi.org/10.1016/S0013-7952(99)00135-0
  16. K.S. Navakowski, G. Bickerton and P. Lapcevic, "Interpretation of Injection-Withdrawal Tracer Experiments Conducted between Two Wells in a Large Single Fracture", J. Contam. Hydrol., 73, pp. 227-247 (2004). https://doi.org/10.1016/j.jconhyd.2004.02.001
  17. W. Widestrand, P. Andersson, J. Byergard, G. Skarnemark, M. Skalberg and E. Wass, "In Situ Migration Experiments at Aspo Hard Rock Laboratory, Sweden: Results of Radioactive Tracer Migration Studies in a Single Fracture", J. Radioanal. Nucl. Chem., 250(3), pp. 501-517 (2001). https://doi.org/10.1023/A:1017905323689
  18. M. Mazurek, A. Jakob and P. Bossart, "Solute Transport in Crystalline Rocks at Aspo-I: Geological Basis and Model Calibration", J. Contam. Hydrol., 61, pp. 157-174 (2003). https://doi.org/10.1016/S0169-7722(02)00137-7
  19. P. Anderson, J. Byergard, E.L. Tullborg, Th. Doe, J. Hermanson and A. Winberg, "In Situ Tracer Tests to Determine Retention Properties of a Block Scale Fracture Network in Granitic Rock at the Aspo Hard Rock Laboratory, Sweden", J. Contam. Hydrol., 70, pp. 271-290 (2004). https://doi.org/10.1016/j.jconhyd.2003.09.009
  20. B. Kienzler, P. Vejmelka, J. Romer and M. Jansson, "Actinide Migration in Fractures of Granite Host Rock: Laboratory and In Situ Investigations", Nucl. Technol., 165, pp. 223-240 (2009).
  21. J. Hadermann and W. Heer, "The Grimsel (Switzerland) Migration Experiment : Integration Field Experiments, Laboratory Investigations and Modelling", J. Contam. Hydrol., 21, pp. 87-100 (1996). https://doi.org/10.1016/0169-7722(95)00035-6
  22. E. Hoehn, J. Eikenberg, T. Fierz, W. Drost and E. Reichlmayr, "The Grimsel Migration Experiment: Field Injection-Withdrawal Experiments in Fractured Rock with Sorbing Tracers", J. Contam. Hydrol., 34, pp. 85-106 (1998). https://doi.org/10.1016/S0169-7722(98)00083-7
  23. A. Mori, W.R. Alexander, H. Geckeis, W. Hauser, T. Schafer, J. Eikenberg, Th. Fierz, C. Degueldre and T. Missana, "The Colloid and Radionuclide Retardation Experiment at the Grimsel Test Site: Influence of Bentonite Colloids on Radionuclide Migration in a Fractured Rock", Colloids Surf. A, 217, pp. 33-47 (2003). https://doi.org/10.1016/S0927-7757(02)00556-3
  24. G. Kosakowski, "Anomalous Transport of Colloids and Solutes in a Shear Zone", J. Contam. Hydrol., 72, pp. 23-46 (2004). https://doi.org/10.1016/j.jconhyd.2003.10.005
  25. M.H. Baik, S.Y. Lee and W.J. Shon, "Retention of Uranium(VI) by Laumontite, a Fracture-Filling Material of Granite", J. Radional. Nucl. Chem., 280(1), pp. 69-77 (2009). https://doi.org/10.1007/s10967-008-7446-6
  26. C.K. Park, W.H. Cho and P.S. Hahn, "Transport Properties of Sorbing Contaminants in a Fractured Granite under Oxidizing Conditions", Korean J. Chem. Eng., 23, pp. 741-746 (2006). https://doi.org/10.1007/BF02705921
  27. S. Kwon, J.H. Park and W.J. Cho, "Concept Design and Site Characterization for the Underground Disposal Research Tunnel at KAERI Site", Tunnel and Underground Space, 14, pp. 175-187 (2004).
  28. W.J. Cho, S Kwon, J.H. Park and P. Hahn, "Basic Design of the Underground Tunnel for the Research on High-Level Waste Disposal", J. Korean Radioact. Waste Soc., 2(4), pp. 279-292 (2004).
  29. W.J. Cho, S. Kwon and J.H. Park, "KURT, a Small-Scale Underground Research Laboratory for the Research on a High-Level Waste Disposal", Ann. Nucl. Energy, 35, pp. 132-140 (2008). https://doi.org/10.1016/j.anucene.2007.05.011
  30. K.S. Kim, K.Y. Kim, M.S. Lee, J.H. Ryu, J.K. Lee, K.W. Park, S.H. Ji, J.S. Kwon, J.S. Kim, C.S. Lee, D.S. Bae, J.Y. Lee, J.W. Choi, H.J. Choi, J. Jung and Y.K. Koh, "Long-term Plan for In Situ Tests and Experiments at KURT Phase II Facility", KAERI/TR-4945/2013, KAERI, Daejeon (2013).
  31. J.K. Lee, T.Y. Lee and M.H. Baik, "Drilling of Boreholes and Characterization of the Properties of Fractures or Shear Zones in KURT for the In-Situ Solute Migration Experiment", Appl. Chem., 14, 91-94 (2010).
  32. H.K. Lee and H.S. Yang, Applied Rock Mechanics, pp. 122-123, Seoul National University Press, Seoul (1997).
  33. P.F.F. Lancaster-Jones, "The Interpretation of the Lugeon Water-Test", Quart. J. Eng. Geol. Hydr., 8, pp. 151-154 (1975). https://doi.org/10.1144/GSL.QJEG.1975.008.02.05
  34. S. Goldberg and N.J. Kabengi, "Bromide Adsorption by Reference Minerals and Soils", Vadose Zone J., 9, pp. 780-786 (2010). https://doi.org/10.2136/vzj2010.0028

Cited by

  1. Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.281