DOI QR코드

DOI QR Code

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae

  • Cho, YuKyeong (Department of Biotechnology, Pukyong National University) ;
  • Kim, Min-Ji (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2013.06.15
  • Accepted : 2013.10.18
  • Published : 2013.12.30

Abstract

Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.

Keywords

References

  1. Rojan, P. J., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  2. Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  3. Balat, M. (2010) Production of bioethanol from lignocellulosic materials via the biochemical pathway; A review. Energ. Convers. Manage. 52: 858-875.
  4. Feng, D., H. Liu, F. Li, Peng. J, and Song. Q (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chin J. Oceanol. Limnol. 6: 1243-1248.
  5. Hsu, C. L., K. S. Chang, M. Z. Lai, T. C. Chang, Y. H. Chang, and H. D. Jang (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass Bioenerg. 35: 1878-1884. https://doi.org/10.1016/j.biombioe.2011.01.031
  6. Marques, S., L. Alves, J. C. Roseiro, and F. M. Girio (2008) Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenerg. 32: 400-406. https://doi.org/10.1016/j.biombioe.2007.10.011
  7. Tomas-Pejo, E., J. M. Oliva, A. Gonzalez, I. Ballesteros, and M. Ballesteros (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 88: 2142-2147. https://doi.org/10.1016/j.fuel.2009.01.014
  8. Kahar, P., K. Taku, and S. Tanaka (2010) Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. J. Biosci. Bioeng. 110: 453-458. https://doi.org/10.1016/j.jbiosc.2010.05.002
  9. Rosgaard, L., P. Andric, D. J. Kim, S. Pedersen, and A. S. Meyer (2007) Effect of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl. Biochem. Biotechnol. 143: 27-40. https://doi.org/10.1007/s12010-007-0028-1
  10. Lu, X., Y. Zhang, and I. Angelidaki (2009) Optimization of $H_{2}SO_{4}$-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresour. Technol. 100: 3048-3053. https://doi.org/10.1016/j.biortech.2009.01.008
  11. Dunaway, K. W., R. K. Dasari, N. G. Bannett, and R. E. Berson (2010) Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresour. Technol. 101: 3575-3582. https://doi.org/10.1016/j.biortech.2009.12.071
  12. Ahn, D. J., S. K. Kim, and H. S. Yun (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 35: 35-41. https://doi.org/10.1007/s00449-011-0600-5
  13. Kuhad, R. C., R. Gupta, Y. P. Khasa, and A. Singh (2010) Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour. Technol. 101: 8348-8354. https://doi.org/10.1016/j.biortech.2010.06.043
  14. Jang, J. S., Y. K. Cho, G. T. Jeong, and S. K. Kim (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18. https://doi.org/10.1007/s00449-011-0611-2
  15. Nichols, N. N., L.N. Sharma, R. A. Mowery, C. K. Chambliss, G. P. V. Walsum, B. S. Dien, and L. B. Iten (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 42: 624-630. https://doi.org/10.1016/j.enzmictec.2008.02.008
  16. Kim, J. D., Y. H. Yoon, T. S. Shin, M. Y. Kim, H. S. Byun, S. J. Oh, and H. J. Seo (2011) Bioethanol production from seaweed Ulva pertusa for environmental application. Korean society for Biotechnol. Bioeng. Jour. 26: 317-322. https://doi.org/10.7841/ksbbj.2011.26.4.317
  17. Karimi, K., G. Emtiazim, and M. J. Taherzadeh (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicys, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme Microb. Technol. 40: 138-144. https://doi.org/10.1016/j.enzmictec.2005.10.046

Cited by

  1. Optimization and Evaluation of Sugars and Chemicals Production from Green Macro-algae Enteromorpha intestinalis vol.9, pp.4, 2016, https://doi.org/10.1007/s12155-016-9759-6
  2. Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis vol.54, pp.1, 2016, https://doi.org/10.9713/kcer.2015.54.1.70
  3. Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향 vol.56, pp.4, 2013, https://doi.org/10.9713/kcer.2018.56.4.542
  4. High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production vol.329, pp.None, 2013, https://doi.org/10.1016/j.biortech.2021.124935
  5. A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production vol.7, pp.4, 2021, https://doi.org/10.1007/s40726-021-00202-7