참고문헌
- Bentley, T., Moore, D., Tappin, D., Parker, R., Ashby, L., & Hide, S. (2003). Slips, Trips and Falls in the New Zealand Dairy Farming Sector.
- Bentley, T., & Haslam, R. (2001). Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery of mail. Applied Ergonomics, 32(2), 127-134. https://doi.org/10.1016/S0003-6870(00)00048-X
- CDC. (2009). Centers for Disease Control and Prevention (CDC). Ten Leading Causes of Death and Injury (Charts). http:// www.cdc.gov/injury/wisqars/LeadingCauses.html.Updated 2009 (accessed 9/26/2009).
- Cham, R., & Redfern, M. S. (2002). Changes in gait when anticipating slippery floors. Gait & Posture, 15(2), 159-171. https://doi.org/10.1016/S0966-6362(01)00150-3
- Davis, R. B., & DeLuca, P. A. (1996). Gait characterization via dynamic joint stiffness. Gait & Posture, 4(3), 224-231. https://doi.org/10.1016/0966-6362(95)01045-9
- Decker, L., Houser, J. J., Noble, J. M., Karst, G. M., & Stergiou, N. (2009). The effects of shoe traction and obstacle height on lower extremity coordination dynamics during walking. Applied Ergonomics, 40(5), 895-903. https://doi.org/10.1016/j.apergo.2008.12.005
- Feder, G., Cryer, C., Donovan, S., & Carter, Y. (2000). Guidelines for the prevention of falls in people over 65. BMJ: British Medical Journal, 321(7267), 1007. https://doi.org/10.1136/bmj.321.7267.1007
- Fong, D. T. P., Mao, D. W., Li, J. X., & Hong, Y. (2008). Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Journal of Biomechanics, 41(4), 838-844. https://doi.org/10.1016/j.jbiomech.2007.11.001
- Gao, C., Abeysekera, J., Hirvonen, M., & Gronqvist, R. (2004). Slip resistant properties of footwear on ice. Ergonomics, 47(6), 710-716. https://doi.org/10.1080/00140130410001658673
- Gronqvist, R. (1995). Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics, 38(2), 224-241. https://doi.org/10.1080/00140139508925100
- Heiden, T. L., Sanderson, D. J., Inglis, J. T., & Siegmund, G. P. (2006). Adaptations to normal human gait on potentially slippery surfaces: the effects of awareness and prior slip experience. Gait & Posture, 24(2), 237-246. https://doi.org/10.1016/j.gaitpost.2005.09.004
- Kerrigan, D. C., Lee, L. W., Collins, J. J., Riley, P. O., & Lipsitz, L. A. (2001). Reduced hip extension during walking: healthy elderly and fallers versus young adults. Archives of Physical Medicine and Rehabilitation, 82(1), 26-30. https://doi.org/10.1053/apmr.2001.18584
- Kim, S., & Lockhart, T. E. (2012). Lower limb control and mobility following exercise training. Journal of Neuro Engineering and Rehabilitation, 9(1), 15. https://doi.org/10.1186/1743-0003-9-15
- Kwak, C. S., & Lee, K. O. (2000). A Study on the foot measurement date for shoe LAST design for the Korean aged women. Journal of Korean Physical Education Association for Girls and Women, 14(1), 23-41.
- Lee, J. H., & Seo, J. S., & Eun, S. D. (2007). In according to walking time the character of the ground reaction force in elderly OA(Osteo-Arthritis) female patient. Korean journal of sport biomechanics, 17(2), 75-82. https://doi.org/10.5103/KJSB.2007.17.2.075
- Lee, K. C., & Choi, C. J. (2000). The study on human technological analysis and evaluation of shoes for Korean old ladies. Journal of Korean Physical Education Association for Girls and Women, 14(2), 121-136.
- Li, K. W., & Chen, C. J. (2004). The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Applied Ergonomics, 35(6), 499-507. https://doi.org/10.1016/j.apergo.2004.06.010
- Li, K. W., & Chen, C. J. (2005). Effects of tread groove orientation and width of the footwear pads on measured friction coefficients. Safety Science, 43(7), 391-405. https://doi.org/10.1016/j.ssci.2005.08.006
- Li, K. W., Chen, C. J., Lin, C. H., & Hsu, Y. W. (2006). Relationship between measured friction coefficients and two tread groove design parameters for footwear pads. Tsinghua Science & Technology, 11(6), 712-719. https://doi.org/10.1016/S1007-0214(06)70254-1
- Li, K. W., Chen, C. Y., Chen, C. C., & Liu, L. (2012). Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions. Work: A Journal of Prevention, Assessment and Rehabilitation, 41, 3349-3351.
- Li, K. W., Wu, H. H., & Lin, Y. C. (2006). The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Applied Ergonomics, 37(6), 743-748. https://doi.org/10.1016/j.apergo.2005.11.007
- Liu, J., & Lockhart, T. E. (2009). Age-related joint moment characteristics during normal gait and successful reactive-recovery from unexpected slip perturbations. Gait & Posture, 30(3), 276-281. https://doi.org/10.1016/j.gaitpost.2009.04.005
- Lockhart, T. E., Woldstad, J. C., & Smith, J. L. (2003). Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics, 46(12), 1136-1160. https://doi.org/10.1080/0014013031000139491
- Lockhart, T. E., & Kim, S. (2006). Relationship between hamstring activation rate and heel contact velocity: Factors influencing age-related slip-induced falls. Gait & Posture, 24(1), 23-34. https://doi.org/10.1016/j.gaitpost.2005.06.016
- Manning, D. P., & Jones, C. (2001). The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane. Applied Ergonomics, 32(2), 185-196. https://doi.org/10.1016/S0003-6870(00)00055-7
- Menant, J. C., Steele, J. R., Menz, H. B., Munro, B. J., & Lord, S. R. (2008). Optimizing footwear for older people at risk of falls. Journal of Rehabilitation Research & Development, 45(8), 1167-1181. https://doi.org/10.1682/JRRD.2007.10.0168
- Menant, J. C., Steele, J. R., Menz, H. B., Munro, B. J., & Lord, S. R. (2009). Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait & Posture, 29(3), 392-397. https://doi.org/10.1016/j.gaitpost.2008.10.057
- Menz, H. B., Lord, S. T., & McIntosh, A. S. (2001). Slip resistance of casual footwear: implications for falls in older adults. Gerontology, 47(3), 145-149. https://doi.org/10.1159/000052788
- Onodera, H., Yamaguchi, T., Yamanouchi, H., Nagamori, K., Yano, M., Hirata, Y., & Hokkirigawa, K. (2010). Analysis of the slip-related falls and fall prevention with an intelligent shoe system. Paper Presented at the Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on.
- Osis, S. T., Worobets, J. T., & Stefanyshyn, D. J. (2012). Early Heelstrike Kinetics Are Indicative of Slip Potential During Walking Over a Contaminated Surface. Human Factors: The Journal of the Human Factors and Ergonomics Society, 54(1), 5-13. https://doi.org/10.1177/0018720811427902
- Perkins, P. J. (1978). Measurement of slip between the shoe and ground during walking. American Society of Testing and Materials: Special Technical Publication, 649, 71-87.
- Rubenstein, L. Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age and ageing, 35(suppl 2), ii37-ii41. https://doi.org/10.1093/ageing/afl084
- Tang, P. F., & Woollacott, M. H. (1998). Inefficient postural responses to unexpected slips during walking in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 53(6), M471.