DOI QR코드

DOI QR Code

State-of-arts in Multiscale Simulation for Process Development

공정개발을 위한 다규모 모사에서의 연구현황

  • Lim, Young-Il (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University)
  • 임영일 (한경대학교 화학공학과 FACS 연구실)
  • Received : 2012.08.08
  • Accepted : 2012.09.16
  • Published : 2013.02.01

Abstract

The state-of-arts of multiscale simulation (MSS) in science and engineering is briefly presented and MSS for process development (PD-MSS) is proposed to effectively apply the MSS to the process development. The four-level PD-MSS is composed of PLS (process-level simulation), FLS (fluid-level simulation), mFLS (microfluid-level simulation) and MLS (molecular-level simulation). Characteristics and methods of each level, as well as connectivity between the four levels are described. For example in PD-MSS, absorption column, fluidized-bed reactor, and adsorption process are introduced. For successful MSS, it is necessary to understand the multiscale nature in chemical engineering problems, to develop models representing physical phenomena at each scale and between scales, to develop softwares implementing mathematical models on computer, and to have strong computing facilities. MSS should be performed within acceptable accuracy of simulation results, available computation capacity, and reasonable efficiency of calculation. Macroscopic and microscopic scale simulations have been developed relatively well but mesoscale simulation shows a bottleneck in MSS. Therefore, advances on mesoscale models and simulation tools are required to accurately and reliably predict physical phenomena. PD-MSS will find its way into a sustainable technology being able to shorten the duration and to reduce the cost for process development.

본 논문은 과학 및 공학에서 폭넓게 연구되고 있는 다규모 모사(multiscale simulation; MSS)에 대하여 간단하게 그 현황을 살펴본 후, 이러한 MSS를 공정개발에 효과적으로 적용하기 위하여 공정개발을 위한 PD-MSS (MSS for process development)를 제시한다. 4단계로 제시된 PD-MSS는 PLS(공정수준모사), FLS(유체수준모사), mFLS(미세유체수준모사), 그리고 MLS(분자수준모사) 로 구성된다. 각 규모의 특징과 주요 기법들, 그리고 이들 4개 규모 간 연관성을 설명한다. PD-MSS의 예로서 흡수탑, 유동층 반응기, 그리고 흡착공정의 모사가 소개된다. 성공적인 다규모 모사(MSS)를 위하여 다규모적 화학공학 문제들에 대한 이해, 각 규모 및 규모간 자연현상을 표현할 수 있는 모델 개발, 수학적 모델을 전산상에서 구현할 수 있도록 하는 소프트웨어 개발, 그리고 계산을 수행하는 하드웨어에서의 조화로운 발전이 필요하다. 다규모 모사는 모사결과의 정확도(accuracy), 컴퓨터의 계산능력(computation capacity), 그리고 효율성(efficiency)을 제한 조건으로 주어진 문제에 접근해야 할 것이다. 거시적 규모와 미시적 규모는 상대적으로 잘 정리되어 있지만, 이들 사이인 중간규모(mesoscale) 에서의 모델은 병목현상을 보이고 있다. 따라서 물리적 현상을 신뢰성 있고, 정확하게 예측하기 위하여 중간규모에 대한 많은 연구가 요구된다. 시작단계에 불과한 PD-MSS는 공정개발에 있어서 시간과 비용을 절감할 수 있는 지속 가능한 기술로서 자리잡게 될 것이다.

Keywords

References

  1. Braatz, R. D., "Multiscale Simulation in Science and Engineering," AIChE annual meeting, November 8-13, Nashville, TN, USA (2009).
  2. E, W., Principles of Multiscale Modeling, 1st ed., Cambridge University Press, New York, NY(2011).
  3. Jaworski, Z. and Zakrzewska, B., "Towards Multiscale Modelling in Product Engineering," Comput. Chem. Eng., 35(3), 434-445 (2011). https://doi.org/10.1016/j.compchemeng.2010.05.009
  4. Fermeglia, M. and Pricl, S., "Multiscale Molecular Modeling in Nanostructured Material Design and Process System Engineering," Comput. Chem. Eng., 33(10), 1701-1710(2009). https://doi.org/10.1016/j.compchemeng.2009.04.006
  5. Delgado-Buscalioni, R., Coveney, P. V., Riley, G. D. and Ford, R. W., "Hybrid Molecular-continuum Fluid Models: Implementation Within a General Coupling Framework," Phil. Trans. R. Soc. A, 363(1833), 1975-1985(2005). https://doi.org/10.1098/rsta.2005.1623
  6. Raimondeau, S. and Vlachos, D. G., "Recent Developments on Multiscale, Hierarchical Modeling of Chemical Reactors," Chem. Eng. J., 90(1-2), 3-23(2002). https://doi.org/10.1016/S1385-8947(02)00065-7
  7. Kim, W., Yun, C., Jung, K. T., Park, S. and Kim, S. H., "Computer-aided Scale-up of a Packed-bed Tubular Reactor," Comput. Chem. Eng., 39, 96-104(2012). https://doi.org/10.1016/j.compchemeng.2011.10.009
  8. Ideker, T., Galitski, T. and Hood, L., "A New Approach to Decoding Life: Systems Biology," Annu. Rev. Genomics Hum. Genet., 2, 343-372(2001). https://doi.org/10.1146/annurev.genom.2.1.343
  9. Vlachos, D. G., in Guy, B. M. (Ed.), A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid-surface interacting systems, Academic Press, 1-61(2005).
  10. Vlachos, D. G., "Multiscale Modeling for Emergent Behavior, Complexity, and Combinatorial Explosion," AlChE J., 58(5), 1314-1325 (2012). https://doi.org/10.1002/aic.13803
  11. Son, H. J., Lim, Y.-I. and Yoo, K. S., "Multiscale Simulation for Adsorption Process Development: a Case Study of n-hexane Adsorption on Activated Carbon," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(6), 1087-1094(2008).
  12. Lee, U., Kim, K. and Oh, M., "Multiscale Modeling and Simulation of Water Gas Shift Reactor," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(6), 582-590(2007).
  13. Braatz, R. D., Alkire, R. C., Rusli, E. and Drews, T. O., "Multiscale Systems Engineering with Applications to Chemical Reaction Processes," Chem. Eng. Sci., 59(22-23), 5623-5628(2004). https://doi.org/10.1016/j.ces.2004.09.022
  14. Steinhauser, M. O., Computational Multiscale Modeling of Solids and Fluids, 1st ed., Springer, Berlin, Germany(2008).
  15. Nguyen, T. D. B., "Multiscale Simulation Approach to Process Development: Computational Fluid Dynamics (CFD) and Process Modeling," Ph.D. Dissertation, Hankyong National University, Anseong, Korea(2011).
  16. ASPEN Technology, "ASPEN Plus," http://www.aspentech.com/.
  17. PSE-Enterprise, "gProms," http://www.psenterprise.com/gproms/.
  18. Ge, W., Wang, W., Yang, N., Li, J., Kwauk, M., et al., "Mesoscale Oriented Simulation Towards Virtual Process Engineering (VPE)-The EMMS Paradigm," Chem. Eng. Sci., 66(19), 4426- 4458(2011). https://doi.org/10.1016/j.ces.2011.05.029
  19. Lim, Y.-I., "ESCAPE 12 (12th European Symposium on Computer- Aided Process Engineering)," KOSEN conference report, CR02- 36(2002).
  20. Perkins, J., "Education in Process Systems Engineering: Past, Present and Future," Comput. Chem. Eng., 26(2), 283-293(2002). https://doi.org/10.1016/S0098-1354(01)00746-3
  21. Stephanopoulos, G. and Reklaitis, G. V., "Process Systems Engineering: From Solvay to Modern Bio- and Nanotechnology: A History of Development, Successes and Prospects for the Future," Chem. Eng. Sci., 66(19), 4272-4306(2011). https://doi.org/10.1016/j.ces.2011.05.049
  22. Chen, J. H., Linstead, E., Swamidass, S. J., Wang, D. and Baldi, P., "ChemDB Update—full-text Search and Virtual Chemical Space," Bioinformatics, 23(17), 2348-2351(2007). https://doi.org/10.1093/bioinformatics/btm341
  23. NIST, "NIST Chemistry WebBook," http://webbook.nist.gov/ chemistry/.
  24. ChERIC, "KDB (Korea thermodynamial properties data bank)," http://www.cheric.org/.
  25. Gani, R., Hytoft, G., Jaksland, C. and Jensen, A. K., "An Integrated Computer Aided System for Integrated Design of Chemical Processes," Comput. Chem. Eng., 21(10), 1135-1146(1997). https://doi.org/10.1016/S0098-1354(96)00324-9
  26. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, 2nd ed., John Wiley & Sons, New York, NY(2007).
  27. ANSYS, "ANSYS Fluent User's Guide," ANSYS, Inc., Canonsburg, Pennsylvania, USA(2012).
  28. Gidaspow, D., Multiphase flow and fluidization: Continuum and kinetic theory description, 1st ed., Academic Press(1994).
  29. Gidaspow, D., Jung, J. and Singh, R. K., "Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm: 2002 Flour- Daniel Lecture," Powder Technol., 148(2-3), 123-141(2004). https://doi.org/10.1016/j.powtec.2004.09.025
  30. Nguyen, T. D. B., Seo, M. W., Lim, Y.-I., Song, B.-H. and Kim, S.-D., "CFD Simulation with Experiments in a Dual Circulating Fluidized Bed Gasifier," Comput. Chem. Eng., 36, 48-56(2012). https://doi.org/10.1016/j.compchemeng.2011.07.005
  31. Geng, Y. and Che, D., "An Extended DEM-CFD Model for Char Combustion in a Bubbling Fluidized Bed Combustor of Inert Sand," Chem. Eng. Sci., 66(2), 207-219(2011). https://doi.org/10.1016/j.ces.2010.10.011
  32. Bertrand, F., Leclaire, L. A. and Levecque, G., "DEM-based Models for the Mixing of Granular Materials," Chem. Eng. Sci., 60(8-9), 2517-2531(2005). https://doi.org/10.1016/j.ces.2004.11.048
  33. Andrews, M. J. and O'Rourke, P. J., "The Multiphase Particlein- cell (MP-PIC) Method for Dense Particulate Flows," Int. J. Multiphase Flow, 22(2), 379-402(1996). https://doi.org/10.1016/0301-9322(95)00072-0
  34. Snider, D. M., Clark, S. M. and O'Rourke, P. J., "Eulerian- Lagrangian Method for Three-dimensional Thermal Reacting Flow with Application to Coal Gasifiers," Chem. Eng. Sci., 66(6), 1285- 1295(2011). https://doi.org/10.1016/j.ces.2010.12.042
  35. Chen, S. and Doolen, G. D., "Lattice Boltzmann Method for Fluid Flows," Annu. Rev. Fluid Mech., 30(1), 329-364(1998). https://doi.org/10.1146/annurev.fluid.30.1.329
  36. Begum, R. and Basit, M. A., "Lattice Boltzmann Method and Its Applications to Fluid Flow Problems," Europ. J. Sci. Res., 22(2), 216-231(2008).
  37. Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. and Joseph, D., "The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications," Int. J. Multiphase Flow, 29(1), 117-169(2003). https://doi.org/10.1016/S0301-9322(02)00108-8
  38. Verma, N., Salem, K. and Mewes, D., "Simulation of Micro- and Macro-transport in a Packed Bed of Porous Adsorbents by Lattice Boltzmann Methods," Chem. Eng. Sci., 62(14), 3685-3698(2007). https://doi.org/10.1016/j.ces.2007.04.005
  39. Aidun, C. K. and Clausen, J. R., "Lattice-Boltzmann Method for Complex Flows," Annu. Rev. Fluid Mech., 42(1), 439-472(2010). https://doi.org/10.1146/annurev-fluid-121108-145519
  40. Succi, S., Filippova, O., Smith, G. and Kaxiras, E., "Applying the Lattice Boltzmann Equation to Multiscale Fluid Problems," Comput. Sci. Eng., 3(6), 26-37(2001).
  41. Ungerer, P., Nieto-Draghi, C., Rousseau, B., Ahunbay, G. and Lachet, V., "Molecular Simulation of the Thermophysical Properties of Fluids: From Understanding Toward Quantitative Predictions," J. Mol. Liq., 134(1-3), 71-89(2007). https://doi.org/10.1016/j.molliq.2006.12.019
  42. Arya, G., Chang, H. C. and Maginn, E. J., "A Critical Comparison of Equilibrium, Non-equilibrium and Boundary-driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials," J. Chem. Phys., 115(17), 8112-8124(2001). https://doi.org/10.1063/1.1407002
  43. Sun, H., "COMPASS: An Ab Initio Force-field Optimized for Condensed-phase Applications - Overview with Details on Alkane and Benzene Compounds," J. Phys. Chem. B, 102(38), 7338-7364 (1998). https://doi.org/10.1021/jp980939v
  44. Lim, Y.-I., Bhatia, S. K., Nguyen, T. X. and Nicholson, D., "Prediction of Carbon Dioxide Permeability in Carbon Slit Pores," J. Membr. Sci., 355(1-2), 186-199(2010). https://doi.org/10.1016/j.memsci.2010.03.030
  45. Lim, Y.-I. and Bhatia, S. K., "Simulation of Methane Permeability in Carbon Slit Pores," J. Membr. Sci., 369(1-2), 319-328(2011). https://doi.org/10.1016/j.memsci.2010.12.009
  46. Bezzo, F., Macchietto, S. and Pantelides, C. C., "A General Framework for the Integration of Computational Fluid Dynamics and Process Simulation," Comput. Chem. Eng., 24(2-7), 653-658(2000). https://doi.org/10.1016/S0098-1354(00)00372-0
  47. Bezzo, F., Macchietto, S. and Pantelides, C. C., "A General Methodology for Hybrid Multizonal/CFD Models: Part I. Theoretical Framework," Comput. Chem. Eng., 28(4), 501-511(2004). https://doi.org/10.1016/j.compchemeng.2003.08.004
  48. Balaji, S., Du, J., White, C. M. and Ydstie, B. E., "Multi-scale Modeling and Control of Fluidized Beds for the Production of Solar Grade Silicon," Powder Technol., 199(1), 23-31(2010). https://doi.org/10.1016/j.powtec.2009.04.022
  49. Mota, J. P. B., Esteves, I. A. A. C. and Rostam-Abadi, M., "Dynamic Modelling of an Adsorption Storage Tank Using a Hybrid Approach Combining Computational Fluid Dynamics and Process Simulation," Comput. Chem. Eng., 28(11), 2421-2431(2004). https://doi.org/10.1016/j.compchemeng.2004.06.004
  50. O'Connell, S. T. and Thompson, P. A., "Molecular Dynamics- continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows," Phys. Rev. E, 52(6), R5792-R5795(1995). https://doi.org/10.1103/PhysRevE.52.R5792
  51. Yasuda, S. and Yamamoto, R., "A Model for Hybrid Simulations of Molecular Dynamics and CFD," Phys. Fluids, 20, 113101(2008). https://doi.org/10.1063/1.3003218
  52. Son, H. J., "Adsorption Isotherms and Diffusivity Predictions on Adsorbent Using Molecular Simulation," MS thesis, Hankyong National University, Anseong, Korea(2009).
  53. Son, H. J. and Lim, Y. I., "Multiscale Simulation Starting at the Molecular Level for Adsorption Process Development," Chinese J. Chem. Eng., 16(1), 108-111(2008). https://doi.org/10.1016/S1004-9541(08)60047-6
  54. Wang, F. Y., Zhu, Z. H., Massarotto, P. and Rudolph, V., "Kinetic Mobility and Connectivity in Nanopore Networks," AlChE J., 58(2), 364-376(2012). https://doi.org/10.1002/aic.12587
  55. Raynal, L. and Royon-Lebeaud, A., "A Multi-scale Approach for CFD Calculations of Gas-liquid Flow Within Large Size Column Equipped with Structured Packing," Chem. Eng. Sci., 62(24), 7196- 7204(2007). https://doi.org/10.1016/j.ces.2007.08.010
  56. Guiochon, G., "Preparative Liquid Chromatography," J. Chromatogr. A, 965(1-2), 129-161(2002). https://doi.org/10.1016/S0021-9673(01)01471-6
  57. Rajendran, A., Paredes, G. and Mazzotti, M., "Simulated Moving Bed Chromatography for the Separation of Enantiomers," J. Chromatogr. A, 1216(4), 709-738(2009). https://doi.org/10.1016/j.chroma.2008.10.075
  58. Lim, Y.-I., Lee, J., Bhatia, S. K., Lim, Y.-S. and Han, C., "Improvement of Para-xylene SMB Process Performance on An Industrial Scale," Ind. Eng. Chem. Res., 49(7), 3316-3327(2010). https://doi.org/10.1021/ie901097z
  59. UOP, "Parex: Aromatics," http://www.uop.com.
  60. Pais, L. S., Loureiro, J. M. and Rodrigues, A. E., "Modeling Strategies for Enantiomers Separation by SMB Chromatography," AlChE J., 44(3), 561-569(1998). https://doi.org/10.1002/aic.690440307
  61. Lim, Y. I. and Jorgensen, S. B., "Optimization of a Six-zone Simulated- moving-bed Chromatographic Process," Ind. Eng. Chem. Res., 46(11), 3684-3697(2007). https://doi.org/10.1021/ie0613772
  62. Sutanto, P. S., Lim, Y.-I. and Lee, J., "Bed-line Flushing and Optimization in Simulated Moving-bed Recovery of Para-xylene," Sep. Purif. Technol., 96, 168-181(2012). https://doi.org/10.1016/j.seppur.2012.05.031
  63. Bentley, J. and Kawajiri, Y., "Prediction-correction Method for Optimization of Simulated Moving Bed Chromatography," AlChE J., DOI: 10.1002/aic.13856(2012).
  64. Coasne, B. and Fourkas, J. T., "Structure and Dynamics of Benzene Confined in Silica Nanopores," J. Phys. Chem. C, 115(31), 15471-15479(2011). https://doi.org/10.1021/jp203831q
  65. Lim, Y.-I. and Lee, A., "Simulation of a Six-zone Simulated Moving Bed Chromatographic Process for NPK Fertilizer Production," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(1), 1-11(2007).
  66. Lim, Y.-I., "A Nonequilibrium Adsorption Model Satisfying Electro-neutrality Condition for Ion-exchange Chromatography," Chem. Eng. Commun., 195(8), 1011-1042(2008). https://doi.org/10.1080/00986440801906971
  67. Ernest, M. V., Whitley, R. D., Ma, Z. and Wang, N. H. L., "Effects of Mass Action Equilibria on Fixed-bed Multicomponent Ionexchange Dynamics," Ind. Eng. Chem. Res., 36(1), 212-226(1997). https://doi.org/10.1021/ie960167u
  68. Verma, N. and Mewes, D., "Lattice Boltzmann Methods for Simulation of Micro and Macrotransport in a Packed Bed of Porous Adsorbents Under Non-isothermal Condition," Comput. Math. Appl., 58(5), 1003-1014(2009). https://doi.org/10.1016/j.camwa.2009.02.023
  69. Li, J., "Real Time Simulation of Chemical Processes: Dream or reality," ECCE (European conference on chemical engineering), September 25-29, Berlin, Germany(2011).

Cited by

  1. 유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학 vol.55, pp.2, 2013, https://doi.org/10.9713/kcer.2017.55.2.201
  2. Multiscale Eulerian CFD of Chemical Processes: A Review vol.4, pp.2, 2013, https://doi.org/10.3390/chemengineering4020023