DOI QR코드

DOI QR Code

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang (Department of Chemical Engineering, Kwangwoon University) ;
  • Umh, Ha Nee (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2012.10.04
  • 심사 : 2012.11.05
  • 발행 : 2013.01.20

초록

Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

키워드

참고문헌

  1. Bhattacharya, S.; Zhang, Q.; Carmichael, P. L.; Boekelheide, K.; Andersen, M. E. PLoS One 2011, 6, e20887. https://doi.org/10.1371/journal.pone.0020887
  2. Krewski,D.; Andersen, M. E.; Mantus, E.; Zeise, L. Risk Anal. 2009, 29, 474. https://doi.org/10.1111/j.1539-6924.2008.01150.x
  3. Andersen, M. E.; Krewski, D. Toxicol. Sci. 2009, 107, 324.
  4. NRC, Toxicity Testing in the 21st Century: A Vision and a Strategy; The National Academies Press: Washington, DC, 2007.
  5. Marambio-Jones, C.; Hoek, E. M. V. J. Nanopart. Res. 2010, 12, 1531. https://doi.org/10.1007/s11051-010-9900-y
  6. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Nat. Nanotech. 2009, 4, 634. https://doi.org/10.1038/nnano.2009.242
  7. Bae, E.; Park, H. J.; Park, J.; Yoon, J.; Kim, Y.; Choi, K.; Yi, J. Bull. Korean Chem. Soc. 2011, 32, 613. https://doi.org/10.5012/bkcs.2011.32.2.613
  8. Park, E. J.; Bae, E.; Yi, J.; Kim, Y.; Choi, K.; Lee, S. H. Yoon, J.; Lee, B. C.; Park, K. Environ. Toxicol. Pharm. 2010, 30, 162. https://doi.org/10.1016/j.etap.2010.05.004
  9. Park, E. J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Toxicol. in Vitro 2010, 24, 872. https://doi.org/10.1016/j.tiv.2009.12.001
  10. Jan, E.; Byrne, S. J.; Cuddihy, M.; Davies, A. M.; Volkov, Y.; Gun'ko, Y. K.; Kotov, N. A. ACS Nano 2008, 2, 928. https://doi.org/10.1021/nn7004393
  11. Meng, H.; Xia, T.; George, S.; Nel, A. E. ACS Nano 2009, 3, 1620. https://doi.org/10.1021/nn9005973
  12. Hirano, A.; Yoshikawa, H.; Matsushita, S.; Yamada, Y.; Shiraki, K. Langmuir 2012, 28, 3887. https://doi.org/10.1021/la204717c
  13. Cho, N. J.; Cho, S. J.; Cheong, K. H.; Glenn, J. S.; Frank, C. W. J. Am. Chem. Soc. 2007, 129, 10050. https://doi.org/10.1021/ja0701412
  14. Chah, S.; Zare, R. N. Phys. Chem. Chem. Phys. 2008, 10, 3203. https://doi.org/10.1039/b802632g
  15. Riske, K. A.; Dobereiner, H. G.; Lamy-Freund, M. T. J. Phys. Chem. B 2002, 106, 239. https://doi.org/10.1021/jp011584+
  16. Bae, E.; Park, H. J.; Lee, J.; Yoon, J.; Kim, Y.; Choi, J.; Park, K.; Choi, K.; Yi, J. Environ. Toxicol. Chem. 2010, 29, 2154. https://doi.org/10.1002/etc.278
  17. Song, J. E.; Phenrat, T.; Marinakos, S.; Xiao, Y.; Liu, J.; Wiesner, M. R.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2011, 45, 5988. https://doi.org/10.1021/es200547c
  18. Moon, J.; Kang, T.; Oh, S.; Hong, S.; Yi, J. J. Colloid Interf. Sci. 2006, 298, 543. https://doi.org/10.1016/j.jcis.2005.12.066
  19. Crow, D. R. Principles and Applications of Electrochemistry, 4th ed., Blackie Academic & Professional: New York, 1994.
  20. Nieh, M. P.; Harroun, T. A.; Raghunathan, V. A.; Glinka, C. J.; Katsaras, J. Biophys. J. 2004, 86, 2615. https://doi.org/10.1016/S0006-3495(04)74316-7
  21. Bhattacharjee, S.; Elimelech, M.; Borkovec, M. Croact. Chem. Acta 1998, 71, 883.
  22. Hiemenz, P. C. Principles of Colloid and Surface Chemistry, 2nd Ed., Dekker: New York, 1986.
  23. Hsu, J.-P.; Liu, B.-T. J. Colloid Interf. Sci. 1998, 198, 186. https://doi.org/10.1006/jcis.1997.5275
  24. Butt, H. J.; Cappella, B.; Kappl, M. Surf. Sic. Rep. 2005, 59, 1. https://doi.org/10.1016/j.surfrep.2005.08.003
  25. Marra, J. Biophys. J. 1986, 50, 815. https://doi.org/10.1016/S0006-3495(86)83522-6
  26. Huynh, K. A.; Chen, K. L. Environ. Sci. Technol. 2011, 45, 5564. https://doi.org/10.1021/es200157h
  27. Hancock, B. C.; Zografi, G. Pharm. Res. 1994, 11, 471. https://doi.org/10.1023/A:1018941810744
  28. Ju, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. J. Phys. Chem. 2009, 113, 2676. https://doi.org/10.1021/jp809578f
  29. Xu, X.-H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J. Biochemistry 2004, 43, 10400. https://doi.org/10.1021/bi036231a

피인용 문헌

  1. A semi-empirical model for transport of inorganic nanoparticles across a lipid bilayer: Implications for uptake by living cells vol.34, pp.3, 2015, https://doi.org/10.1002/etc.2812
  2. Transport of citrate-coated silver nanoparticles in saturated porous media vol.42, pp.6, 2013, https://doi.org/10.1007/s10653-019-00413-4