DOI QR코드

DOI QR Code

1,8-Naphthyridine Modified Naphthalimide Derivative: Ratiometric and Selective Sensor for Hg2+ in Organic Aqueous Solution

  • Shi, Yong Gang (Key Laboratory of Molecular Engineering and Photo-functional Materials, College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Duan, Yu Lian (Key Laboratory of Molecular Engineering and Photo-functional Materials, College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Chen, Jian Hua (Yunnan Academy of Tobacco Science) ;
  • Wu, Xiang Hua (Key Laboratory of Molecular Engineering and Photo-functional Materials, College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Zhou, Ying (School of Chemical Science and Technology, Yunnan University) ;
  • Zhang, Jun Feng (Key Laboratory of Molecular Engineering and Photo-functional Materials, College of Chemistry and Chemical Engineering, Yunnan Normal University)
  • Received : 2012.09.19
  • Accepted : 2012.10.04
  • Published : 2013.01.20

Abstract

A bottom-modified (4-position) naphthalimide derivative 1 with 1,8-naphthyridine as binding site has been designed and synthesized. Compound 1 is the first 1,8-naphthyridine-modified naphthalimide-based sensor that can detect $Hg^{2+}$ selectively with respect to ratiometric fluorescent change and blue shift in organic aqueous solution. The Job's plot and FAB mass indicate that 1 formed a 1:1 complex with $Hg^{2+}$. A top-modified naphthalimide derivative 2 with 1,8-naphthyridin as binding site has also been synthesized for comparison.

Keywords

References

  1. Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355. https://doi.org/10.1039/b513733k
  2. Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kin, H. N.; Park, S.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528. https://doi.org/10.1021/ja906855a
  3. Kim, H. J.; Bhuniya, S.; Mahajan, R. K.; Puri, R.; Liu, H.; Ko, K. C.; Lee, J. Y.; Kim, J. S. Chem. Commun. 2009, 7128.
  4. Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457. https://doi.org/10.1039/b918937h
  5. Que, E. L.; Donmaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517. https://doi.org/10.1021/cr078203u
  6. Kim, H. M.; Seo, M. S.; An, M. J.; Hong, J. H.; Tian, Y. S.; Choi, J. H.; Kwon, O.; Lee, K. J.; Cho, B. R. Angew. Chem., Int. Ed. 2008, 47, 5167. https://doi.org/10.1002/anie.200800929
  7. Zhang, Y.; Guo, X.; Si, W.; Jia, L.; Qian, X. Org. Lett. 2008, 10, 473. https://doi.org/10.1021/ol702869w
  8. Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142. https://doi.org/10.1021/ja900980u
  9. Xu, Z.; Kim, G.-H.; Han, S. J.; Jou, M. J.; Lee, C.; Shin, I.; Yoon, J. Tetrahedron 2009, 65, 2307. https://doi.org/10.1016/j.tet.2009.01.035
  10. Zhou, Y.; Kim, H. N.; Yoon, J. Bioorg. Med. Chem. Lett. 2010, 20, 125. https://doi.org/10.1016/j.bmcl.2009.11.028
  11. Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc. 2010, 132, 601. https://doi.org/10.1021/ja907334j
  12. Nolan, E. M.; Lipard, S. J. Chem. Rev. 2008, 108, 3443. https://doi.org/10.1021/cr068000q
  13. Lin, W. Y.; Cao, X. W.; Ding, Y. D.; Yuan, L.; Long, L. L. Chem. Comm. 2010, 46, 3529. https://doi.org/10.1039/b927373e
  14. Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210. https://doi.org/10.1039/c1cs15245a
  15. Huang, J.; Xu, Y.; Qian, X. J. Org. Chem. 2009, 74, 2169.
  16. Huang, W.; Song, C.; He, C.; Lv, G.; Hu, X.; Zhu, X.; Duan, C. Inorg. Chem. 2009, 48, 5061. https://doi.org/10.1021/ic8015657
  17. Suresh, M.; Mishra, S.; Mishra, S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009, 13, 2740.
  18. Fan, J.; Guo, K.; Peng, X.; Du, J.; Wang, J.; Sun, S.; Li, H. Sens. Actuators, B. 2009, 142, 191. https://doi.org/10.1016/j.snb.2009.08.002
  19. Tian, M.; Ihmels, H. Chem. Commun. 2009, 3175.
  20. Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11, 2101. https://doi.org/10.1021/ol900542y
  21. Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S.-K. Chem. Commun. 2009, 3560.
  22. Jiang, W.; Wang, W. Chem. Commun. 2009, 3913.
  23. Tang, B.; Ding, B.; Xu, K.; Tong, L. Chem. Eur. J. 2009, 15, 3147. https://doi.org/10.1002/chem.200802165
  24. Santra, M.; Ryu, D.; Chatterjee, A.; Ko, S.-K.; Shin, I.; Ahn, K. H. Chem. Commun. 2009, 2115.
  25. Lee, D.-N.; Kim, G.-J.; Kim, H.-J. Tetrahedron. Lett. 2009, 50, 4766. https://doi.org/10.1016/j.tetlet.2009.06.017
  26. Kim, H. N.; Nam, S.-W.; Swamy, K. M. K.; Jin, Y.; Chen, X. Q.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Analyst 2011, 136, 1339. https://doi.org/10.1039/c0an00804d
  27. Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.- G. Org. Lett. 2006, 8, 859. https://doi.org/10.1021/ol0529086
  28. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270. https://doi.org/10.1021/ja037995g
  29. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  30. Yuan, M.; Li, Y.; Li, J.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313. https://doi.org/10.1021/ol0706399
  31. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 5910. https://doi.org/10.1021/ja068879r
  32. Shi, W.; Ma, H. Chem. Commun. 2008, 1856.
  33. Zhan, X.-Q.; Zheng, Z.-H.; Su, B.-Y.; Lan, Z.; Xu, J.-G. Chem. Commun. 2008, 1859.
  34. Chen, X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett. 2008, 10, 5235. https://doi.org/10.1021/ol8022598
  35. Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. Org. Lett. 2008, 10, 1481. https://doi.org/10.1021/ol800197t
  36. Yang, Y.-K.; Yoon, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760. https://doi.org/10.1021/ja054855t
  37. Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K.-C.; Ahn, S.; Chang, S.-K. Org. Lett. 2006, 8, 3413. https://doi.org/10.1021/ol060788b
  38. Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907. https://doi.org/10.1021/ol070109c
  39. Yang, Y.-K.; Ko, S.-K.; Shin, I.; Tae, J. Nat. Protoc. 2007, 2, 1710.
  40. Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150. https://doi.org/10.1021/ja065114a
  41. Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47, 8025. https://doi.org/10.1002/anie.200803246
  42. Mahapatra, A. K.; Roy, J.; Sahoo, P.; Mukhopadhyay, S. K.; Chattopadhyay, A. Org. Biomol. Chem. 2012, 10, 2231. https://doi.org/10.1039/c2ob06792g
  43. Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418. https://doi.org/10.1039/c0cc00686f
  44. Kim, J. K.; Quang, D. T. Chem, Rev. 2007, 107, 3780. https://doi.org/10.1021/cr068046j
  45. Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cao, B. R.; Kim, J. S. Org. Lett. 2011, 13, 1190. https://doi.org/10.1021/ol200072e
  46. Zhang, J. F.; Park, M.; Ren, W. X.; Kim, Y.; Kim, S. J.; Jung, J. H.; Kim, J. S. Chem. Comm. 2011, 47, 3568. https://doi.org/10.1039/c1cc00021g
  47. Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S. J.; Kim, S. Org. Lett. 2010, 12, 3852. https://doi.org/10.1021/ol101535s
  48. Zhang, J. F.; Lim, C. S.; Cho, B. R.; Kim, J. S. Talanta 2010, 83, 658. https://doi.org/10.1016/j.talanta.2010.10.016
  49. Zhang, H. M.; Fu, W. F.; Gan, X.; Xu, Y. Q.; Wang, J.; Xu, Q. Q.; Chi, S. M. Dalton Trans. 2008, 6817.
  50. Appelbaum, P. C.; Hunter, P. A. International, J. Antimicrobial Agents 2000, 16, 5. https://doi.org/10.1016/S0924-8579(00)00192-8
  51. Tanaka, K.; Murakami, M.; Jeon, J.-H.; Chujo, Y. Org. Biomol. Chem. 2012, 10, 90. https://doi.org/10.1039/c1ob06630g
  52. Eldrup, A. B.; Christensen, C.; Haaima, G.; Nielsen, O. E. J. Am. Chem. Soc. 2002, 124, 3254. https://doi.org/10.1021/ja0117027
  53. Nakatani, K.; Horie, S.; Saito, I. J. Am. Chem. Soc. 2003, 125, 8972. https://doi.org/10.1021/ja0350740
  54. Fang, J. M.; Selvi, S.; Liao, J. H.; Slanina, Z.; Chen, C. T.; Chou, P. T. J. Am. Chem. Soc. 2004, 126, 3559. https://doi.org/10.1021/ja039237w
  55. Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418. https://doi.org/10.1039/c0cc00686f
  56. Sheldrick, G. M., SHELXL. 97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1997.
  57. Henry R. A.; Hammond, P. R. J. Heterocyclic Chem. 1977, 14, 1109. https://doi.org/10.1002/jhet.5570140638
  58. Brow, E. V. J. Org. Chem. 1965, 30, 1607. https://doi.org/10.1021/jo01016a066
  59. Newkome, G. R.; Garbis, S. J.; Majestic, V. K.; Fronczek, F. R.; Chiari, G. J. Org. Chem. 1981, 46, 833. https://doi.org/10.1021/jo00318a001
  60. Wang, D. H.; Zhang, X. L.; He, C.; Duan, C. Y. Org. Biomol. Chem. 2010, 8, 2923. https://doi.org/10.1039/c004148c

Cited by

  1. ions based on polyurethane membrane vol.24, pp.12, 2013, https://doi.org/10.1002/pat.3192
  2. -Selective Fluorescent Sensing and Its Application in In Vivo Imaging vol.9, pp.3, 2014, https://doi.org/10.1002/asia.201301123
  3. Selective sensing of Al3+ by naphthyridine coupled rhodamine chemosensors vol.4, pp.45, 2014, https://doi.org/10.1039/c4ra01737d
  4. Determination of Mercury Ions in Aqueous Medium and Urine Sample Using Thiocarbohydrazide Based Sensor vol.5, pp.43, 2013, https://doi.org/10.1002/slct.202002914
  5. Recent advancements in the role of N-Heterocyclic receptors on heavy metal ion sensing vol.191, pp.None, 2013, https://doi.org/10.1016/j.dyepig.2021.109331