DOI QR코드

DOI QR Code

Enhanced Raman Spectrum of Juglone on Ag Surface: Is It a Simile to That of Lawsone?

  • Received : 2012.09.17
  • Accepted : 2012.10.09
  • Published : 2013.01.20

Abstract

The surface enhanced Raman spectrum of juglone, a traditional natural dye, has been observed by a custom-built micro-Raman setup. The spectral features of juglone significantly differ from those of lawsone, a structural isomer of juglone; only small red shifts of the double bond stretching bands are observed, and strong SERS bands are observed in the lower frequency regions as well. The DFT computations reveal that juglone coordinated to an $Ag^+$ adatom with $H^+$ release best correlates with the observed vibrational characteristics in the SERS spectrum among the plausible configurations of juglone coordinated to an adatom on the Ag surface, in line with the previously studied lawsone case. The differences in the SERS spectra of juglone and lawsone are attributed to the different locations of the hydroxyl group in the two isomers.

Keywords

References

  1. Parras, D.; Vandenabeele, P.; Sanchez, A.; Montejo, M.; Moens, L.; Ramos, N. J. Raman Spectrosc. 2010, 41, 68. https://doi.org/10.1002/jrs.2405
  2. Casadio, F.; Leona, M.; Lombardi, J. R.; Duyne, R. V. Acc. Chem. Res. 2010, 43, 782. https://doi.org/10.1021/ar100019q
  3. Scherrer, N. C.; Stefan, Z.; Francoise, D; Annette, F; Renate, K. Spectrochim. Acta A 2009, 73, 5054.
  4. Vandenabeele, R.; Edwards, H. G. M.; Moens, L. Chem. Rev. 2007, 107, 675. https://doi.org/10.1021/cr068036i
  5. Scherrer, N. C.; Stefan, Z.; Francoise, D.; Annette, F.; Renate, K. Spectrochim. Acta A 2009, 73, 505. https://doi.org/10.1016/j.saa.2008.11.029
  6. Barber, E. J. W. Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages with Special Reference to the Aegean; Princeton University Press, 1991, ISBN 069100224x.
  7. Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. Chem. Soc. Rev. 2008, 37, 1001. https://doi.org/10.1039/b708461g
  8. Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Eur. J. Inorg. Chem. 2010, 4288.
  9. Heo, J.-Y.; Cho, C.-H.; Jeon, H.-S.; Cheong, B.-S.; Cho, H.-G. Spectrochim. Acta A 2011, 83, 425. https://doi.org/10.1016/j.saa.2011.08.057
  10. Leona, M.; Stenger, J.; Ferloni, E. J. Raman Spectrosc. 2006, 37, 981. https://doi.org/10.1002/jrs.1582
  11. Bowie, J. H.; Cameron, D. W.; Williams, D. H. J. Am. Chem. Soc. 1965, 87, 5094. https://doi.org/10.1021/ja00950a020
  12. Lee, A. S.; Mahon, P. J.; Creagh, D. C. Vib. Spectrosc. 2006, 41, 170. https://doi.org/10.1016/j.vibspec.2005.11.006
  13. Whitney, A. V.; Van Duyne, R. P.; Casadio, F. J. Raman Spectrosc. 2006, 37, 993. https://doi.org/10.1002/jrs.1576
  14. Pawar, A. B.; Jadhav, K. D.; Gonewar, N. R.; Sarawadekar, R. G. J. Pharm. Res. 2011, 4, 2051.
  15. Hendra, P. J. Spectrochim. Acta A 1995, 51, 2205. https://doi.org/10.1016/0584-8539(95)01502-9
  16. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  17. Canamares, M. V.; Garcia-Ramos, J. V.; Gomes-Varga, J. D.; Domingo, C.; Sanchez-Cortes, S. Langmuir 2005, 21, 8546. https://doi.org/10.1021/la050030l
  18. Jin, R. J. Mol. Struct. (Theochem) 2010, 939, 9. https://doi.org/10.1016/j.theochem.2009.09.024
  19. Takasuka, M.; Matsui, Y. J. C. S. Perkin II 1979, 1743.
  20. Galasso, V. Chem. Phys. 2010, 374, 138. https://doi.org/10.1016/j.chemphys.2010.07.017
  21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford, CT, 2009.
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  23. Lee, C.; Yang, Y.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  24. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062. https://doi.org/10.1063/1.457230
  25. Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. https://doi.org/10.1007/BF01114537
  26. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  27. Burke, K.; Perdew, J. P.; Wang, Y. In Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J. F., Vignale, G., Das, M. P., Ed.; Plenum, 1998.
  28. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  29. Andersson, M. P.; Uvdal, P. L. J. Phys. Chem. A 2005, 109, 2937. https://doi.org/10.1021/jp045733a
  30. Simon, O.; Bumm, L. A.; Callaghan, R.; Blatchford, C. G.; Kerker, M. J. Phys. Chem. 1983, 87, 1014. https://doi.org/10.1021/j100229a020
  31. Bell, S. E. J.; Sirimuthu, N. M. S. J. Phys. Chem. A 2005, 109, 7405. https://doi.org/10.1021/jp052184f
  32. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
  33. Pavia, D. L.; Lampman, G. M.; George, S. K. Introduction to Spectroscopy, 3rd Ed.; Brooks Cole: New York, 2000.
  34. Thomson, R. H. Q. Rev. Chem. Soc. 1956, 10, 27. https://doi.org/10.1039/qr9561000027
  35. Vessally, E.; Fereyduni, E.; Kamaee, M.; Moradi, S. J. Serb. Chem. Soc. 2011, 76, 879. https://doi.org/10.2298/JSC100930080V
  36. Muniz-Miranda, M.; Pergolese, B.; Bigotto, A. Vib. Spectrosc. 2007, 43, 97. https://doi.org/10.1016/j.vibspec.2006.06.023
  37. Perry, D. A.; Cordova, J. S.; Spencer, W. D.; Smith, L. G. J. Phys. Chem. C 2010, 114, 14953. https://doi.org/10.1021/jp104256h
  38. Cardini, G.; Munitz-Miranda, M. J. Phys. Chem. B 2002, 106, 6875. https://doi.org/10.1021/jp014205l
  39. Pagliai, M.; Bellucci, L.; Munitz-Miranda, M.; Cardini, G.; Schettino, V. Phys. Chem. Chem. Phys. 2006, 8, 171. https://doi.org/10.1039/b509976e
  40. Zhao, L.; Jensen, L.; Schatz, G. C. J. Am. Chem. Soc. 2006, 128, 2911. https://doi.org/10.1021/ja0556326
  41. Sharma, V.; Park, K.; Srinivasara, M. Mat. Sci. Eng. R. 2009, 65, 1-38 https://doi.org/10.1016/j.mser.2009.02.002

Cited by

  1. Surface-enhanced Raman Spectroscopic Studies of Ellagic Acid in Silver Colloids vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10311
  2. SERS Spectroscopy and DFT Studies of Thionine and its Derivatives Adsorbed on Silver Colloids: Which N Atom is Used for Coordination of a Phenothiazine-Based Natural Dye to Electron-Deficient Metal Surface? vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11205
  3. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities vol.9, pp.5, 2015, https://doi.org/10.1049/iet-nbt.2015.0008
  4. Fluorescence and surface-enhanced vibrational spectroscopies of lawsone and plumbagin vol.49, pp.5, 2013, https://doi.org/10.1080/00387010.2016.1146772
  5. Surface‐enhanced Raman Spectroscopy and Density Functional Theory Studies of Riboflavin, Lumiflavin, and Lumichrome Adsorbed on Silver Colloids vol.40, pp.12, 2013, https://doi.org/10.1002/bkcs.11898