DOI QR코드

DOI QR Code

A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites

알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 특성 및 파괴인성에 대한 연구

  • Received : 2012.07.30
  • Accepted : 2012.09.28
  • Published : 2013.01.25

Abstract

In this work, the effect of alumina nanofibers on thermal conductivity and fracture toughness of alumina nanofibers and powder filled epoxy (EP) composites were investigated with varying alumina nanofiber content from 20 to 100 phr. Thermal conductivity was tested using a laser flash analysis (LFA). The fracture toughness of the composites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The mophologies were observed by scanning electron microscopy (SEM). From the results, it was found that the thermal conductivity was enhanced with increasing alumina nanofiber content, which played a key factor to determine the thermal conductivity. The $K_{IC}$ value was increased with increasing alumina nanofiber content, whereas the value decreased above 40 phr alumina nanofiber content. This was probably considered that the alumina nanofiber entangled each other in EP due to an excess of alumina nanofibers.

본 연구에서는 알루미나 나노섬유의 함량을 20에서 100 phr까지 달리하여 알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향에 대해서 살펴보았다. 열전도도는 열전도도분석기로 측정하였고, 파괴인성은 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였다. 모폴로지는 주사전자현미경(SEM)으로 관찰하였다. 실험결과, 알루미나 나노섬유의 함량이 증가함에 따라 열전도도가 향상됨을 확인할 수 있었으며, 알루미나 나노섬유의 함량이 열전도도를 결정하는 중요한 요소임을 알 수 있었다. $K_{IC}$ 값도 알루미나 나노섬유의 함량이 증가할수록 큰 값을 가지는 것을 확인할 수 있었으나 40 phr 이상에서는 오히려 감소하였다. 이는 과량의 알루미나 나노섬유가 에폭시 내에서 서로 뭉침으로 인하여 $K_{IC}$ 값을 감소시킨 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. M. M. Schwartz, Nanocomposites Materials Handbook, 2nd ed., McGraw-Hill, New York, 1992.
  2. I. Terasaki, Comprehensive Semiconductor Science and Technology, Chapter 1.09, p 326 (2011). https://doi.org/10.1016/B978-0-44-453153-7.00070-5
  3. P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Compos. A; Appl. Sci. Manuf., 41, 1345 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003
  4. A. Martone, C. Formicola, M. Giordano, and M. Zarrelli, Compos. Sci. Technol., 70, 1154 (2010). https://doi.org/10.1016/j.compscitech.2010.03.001
  5. Y. Hou, L. Guo, and G. Wang, J. Electroanal. Chem., 617, 211 (2008). https://doi.org/10.1016/j.jelechem.2008.02.011
  6. G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Compos. A; Appl. Sci. Manuf., 37, 727 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
  7. H. Ishida and S. Rimdusit, Thermochim. Acta, 320, 177 (1998). https://doi.org/10.1016/S0040-6031(98)00463-8
  8. Y. Nagai and G. C. Lai, J. Ceram. Soc. Jpn., 105, 197 (1997). https://doi.org/10.2109/jcersj.105.197
  9. Y. S. Choi, H. W. Lee, J. H. Lee, Y. I. Park, and C. E. Kim, J. Kor. Cerm. Soc., 32, 995 (1995).
  10. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbot, J. Appl. Phys., 32, 1679 (1961). https://doi.org/10.1063/1.1728417
  11. M. Abdalla, D. Dean, M. Theodore, J. Fielding, E. Nyairo, and G. Price, Polymer, 51, 1614 (2010). https://doi.org/10.1016/j.polymer.2009.05.059
  12. W. N. Santos, P. Mummery, and A. Wallwork, Polymer, 24, 628 (2005).
  13. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, and J. Kou, J. Appl. Polym. Sci., 104, 1312 (2007). https://doi.org/10.1002/app.25789
  14. S. J. Park and G. Y. Heo, Macromol. Res., 17, 870 (2009). https://doi.org/10.1007/BF03218628
  15. S. B. Lee, H. J. Lee, and I. K. Hong, J. Ind. Eng. Chem., 18, 635 (2012). https://doi.org/10.1016/j.jiec.2011.11.030
  16. S. J. Park, W. B. Park, and J. R. Lee, Polym. J., 31, 28 (1999). https://doi.org/10.1295/polymj.31.28
  17. S. J. Park, G. Y. Heo, and K.Y. Rhee, Polymer(Korea), 35, 548 (2011).
  18. J. Hong, D. W. Park, and S. E. Shim, Carbon Lett., 11, 347 (2010)
  19. S. J. Park and K. S. Kim, Carbon Lett., 13, 51 (2012). https://doi.org/10.5714/CL.2012.13.1.051
  20. Z. Q. Tao, S. Y. Yang, J. S. Chen, and L. Fan, Eur. Polym. J., 43, 1470 (2007). https://doi.org/10.1016/j.eurpolymj.2007.01.039
  21. W. Zhou, S. Qi, H. Li, and S. Shao, Thermochim. Acta, 36, 452 (2007).
  22. P. Dashora and G. Gupta, Polymer, 37, 231 (1996). https://doi.org/10.1016/0032-3861(96)81092-5
  23. W. H. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, Polym. Eng. Sci., 39, 756 (1999). https://doi.org/10.1002/pen.11464
  24. S. J. Park and H. C. Kim, J. Polym. Sci. Part B: Polym. Phys., 39, 121 (2001). https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  25. S. J. Park, G. Y. Heo, S. Y. Oh, and K. E. Choi, Carbon Lett., 12, 53 (2011) https://doi.org/10.5714/CL.2011.12.1.053
  26. X. L. Deng and X. P. Yang, Carbon Lett., 13, 139 (2012). https://doi.org/10.5714/CL.2012.13.3.139
  27. W. S. Lee and J. Yu, Diam. Relat. Mater., 14, 1647 (2005). https://doi.org/10.1016/j.diamond.2005.05.008
  28. W. N. Santos, P. Mummery, and A. Wallwork, Polym. Test., 24, 628 (2005). https://doi.org/10.1016/j.polymertesting.2005.03.007
  29. S. J. Park and B. J. Jun, J. Colloid Interface Sci., 284, 204 (2005). https://doi.org/10.1016/j.jcis.2004.09.074
  30. W. H. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, Polym. Eng. Sci., 39, 756 (1999). https://doi.org/10.1002/pen.11464
  31. D. G. Munz, J. Shannon, L. J. Bubsey, and T. Raymond, Int. J. Fract., 16, 137 (1980). https://doi.org/10.1007/BF00013393
  32. R. P. Smith, D. Li, D. W. Francis, J. Chappuis, and A. W. Neumann, J. Colloid Interface Sci., 157, 478 (1993). https://doi.org/10.1006/jcis.1993.1210
  33. M. G. Lu, M. J. Shim, and S. W. Kim, Polym. Int., 48, 787 (1999). https://doi.org/10.1002/(SICI)1097-0126(199909)48:9<787::AID-PI229>3.0.CO;2-I
  34. J. H. Ko, J. C. Kim, and J. H. Chang, Polymer(Korea), 33, 333 (2009).
  35. S. Zheng, J. Wang, Q. Guo, J. Wei, and J. Li, Polymer, 37, 4667 (1996). https://doi.org/10.1016/S0032-3861(96)00324-2
  36. H. C. Kim, S. Jeon, H. I. Kim, H. S. Choi, M. H. Hong, and K. S. Choi, Polymer(Korea), 35, 563 (2011).

Cited by

  1. Carbonization of Pitch-coated Glass Fibers on Thermal Conductivity of Epoxy Composites vol.26, pp.5, 2013, https://doi.org/10.7234/composres.2013.26.5.315
  2. 알루미나 분말 혼합 비율에 따른 GFRP의 기계적 강도 특성 vol.30, pp.1, 2020, https://doi.org/10.3740/mrsk.2020.30.1.22
  3. 산화주석을 함유한 열경화성 액정 에폭시의 열적 특성에 관한 연구 vol.33, pp.1, 2013, https://doi.org/10.7234/composres.2020.33.1.025
  4. Mechanical Characteristics of a Laminated Board for Fishing Vessel with a Middle Resin Layer Mixed with Alumina Powder vol.24, pp.6, 2013, https://doi.org/10.9726/kspse.2020.24.6.036
  5. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment vol.13, pp.16, 2013, https://doi.org/10.3390/polym13162691