References
- S. Al-Homidan, Q. H. Ansaria, and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69 (2008), no. 1, 126-139. https://doi.org/10.1016/j.na.2007.05.004
- M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416-420. https://doi.org/10.1016/j.jmaa.2007.09.070
- M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric spaces, Applied Mathematics Letters (2008), doi:10.1016/j.akl.2008.07.001.
- M. Ashad, A. Azam, and P. Vetro, Some common fixed results in cone metric spaces, Fixed point theory and Apllications 2009, Article ID 493965, 11pages, 2009.
- J. P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhauser Boston, Inc., Boston, MA, 1990.
- M. Bianchi, G. Kassay, and R. Pini, Existence of equilibria via Ekeland's principle, J. Math. Anal. Appl. 305 (2005), no. 2, 502-512. https://doi.org/10.1016/j.jmaa.2004.11.042
- S. H. Cho and J. S. Bae, Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces, Math. Comput. Modelling 53 (2011), no. 5-6, 945-951. https://doi.org/10.1016/j.mcm.2010.11.002
- S. H. Cho and J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl. 2011 (2011), 87, 7 pp. https://doi.org/10.1186/1687-1812-2011-87
- W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010), no. 5, 2259-2261. https://doi.org/10.1016/j.na.2009.10.026
- D. G. De Figueiredo, The Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Bombay, 1989.
- I. Ekeland, Sur les problems variationnels, C. R. Acad. Sci. Par 275 (1972), 1057-1059.
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
- I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443-474. https://doi.org/10.1090/S0273-0979-1979-14595-6
- L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
- D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 2, 876-882. https://doi.org/10.1016/j.jmaa.2007.10.065
- D. Ilic and V. Rakocevic, Quasi-contraction on cone metric spaces, Applied Mathematics Letters (2008), doi:10.1016/j.aml.2008.08.001.
- S. Jankovic, Z. Kadelburg, S. Radenovic, and B. E. Rhoades, Assad-Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 761086, 16 pp.
- G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 643840, 13 pp.
- Z. Kadelburg, M. Pavlovic, and S. Radenovic, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010), no. 9, 3148-3159. https://doi.org/10.1016/j.camwa.2010.02.039
- Z. Kadelburg, S. Radenovic, and V. Rakocevic, Remaks on Quasi-contraction on a cone metric spaces, Applied Math. Letters 22 (2009), 1674-1679. https://doi.org/10.1016/j.aml.2009.06.003
- Z. Kadelburg, S. Radenovic, and B. Rosic, Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 173838, 14 pp.
- O. Kada, T. Suzuki, and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), no. 2, 381-391.
- D. Klim and D. Wardowski, Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear Anal. 71 (2009), no. 11, 5170-5175. https://doi.org/10.1016/j.na.2009.04.001
- L. J. Lin andW. S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl. 323 (2006), no. 1, 360-370. https://doi.org/10.1016/j.jmaa.2005.10.005
- J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle, Nonlinear Anal. 10 (1986), no. 9, 813-822. https://doi.org/10.1016/0362-546X(86)90069-6
- S. Radenovic, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl. 58 (2009), no. 6, 1273-1278. https://doi.org/10.1016/j.camwa.2009.07.035
- Sh. Rezapour, R. Haghi, and N. Shahzad, Some notes on fixed points of quasi-contraction maps, Appl. Math. Lett. 23 (2010), no. 4, 498-502. https://doi.org/10.1016/j.aml.2010.01.003
- Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008), no. 2, 719-724. https://doi.org/10.1016/j.jmaa.2008.04.049
- T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), no. 2, 440-458. https://doi.org/10.1006/jmaa.2000.7151
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
- K. Wlodarczyk, R. Plebaniak, and C. Obczynski, Convergence theorems, best approxi-mation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal. 72 (2010), no. 2, 794-805. https://doi.org/10.1016/j.na.2009.07.024
- S. K. Yang, J. S. Bae, and S. H. Cho, Coincidence and common fixed and periodic point theorems in cone metric spaces, Comput. Math. Appl. 61 (2011), no. 2, 170-177. https://doi.org/10.1016/j.camwa.2010.10.031
- J. Zeng and S. J. Li, An Ekeland's variational principle for set-valued mappings with applications, J. Comput. Appl. Math. 230 (2009), no. 2, 477-484. https://doi.org/10.1016/j.cam.2008.12.014
- Z. Zhao and X. Chen, Fixed points of decreasing operators in ordered Banach spaces and applications to nonlinear second order elliptic equations, Comput. Math. Appl. 58 (2009), no. 6, 1223-1229. https://doi.org/10.1016/j.camwa.2009.06.050
Cited by
- Multivalued fixed point theorems in tvs-cone metric spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-184