DOI QR코드

DOI QR Code

FIXED POINTS AND VARIATIONAL PRINCIPLE WITH APPLICATIONS TO EQUILIBRIUM PROBLEMS ON CONE METRIC SPACES

  • Received : 2011.12.05
  • Published : 2013.01.01

Abstract

The aim of this paper is to establish variational principle on cone metric spaces and to give some existence theorems of solutions for equilibrium problems on cone metric spaces. We give some equivalences of an existence theorem of solutions for equilibrium problems on cone metric spaces.

Keywords

References

  1. S. Al-Homidan, Q. H. Ansaria, and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69 (2008), no. 1, 126-139. https://doi.org/10.1016/j.na.2007.05.004
  2. M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416-420. https://doi.org/10.1016/j.jmaa.2007.09.070
  3. M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric spaces, Applied Mathematics Letters (2008), doi:10.1016/j.akl.2008.07.001.
  4. M. Ashad, A. Azam, and P. Vetro, Some common fixed results in cone metric spaces, Fixed point theory and Apllications 2009, Article ID 493965, 11pages, 2009.
  5. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhauser Boston, Inc., Boston, MA, 1990.
  6. M. Bianchi, G. Kassay, and R. Pini, Existence of equilibria via Ekeland's principle, J. Math. Anal. Appl. 305 (2005), no. 2, 502-512. https://doi.org/10.1016/j.jmaa.2004.11.042
  7. S. H. Cho and J. S. Bae, Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces, Math. Comput. Modelling 53 (2011), no. 5-6, 945-951. https://doi.org/10.1016/j.mcm.2010.11.002
  8. S. H. Cho and J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl. 2011 (2011), 87, 7 pp. https://doi.org/10.1186/1687-1812-2011-87
  9. W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010), no. 5, 2259-2261. https://doi.org/10.1016/j.na.2009.10.026
  10. D. G. De Figueiredo, The Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Bombay, 1989.
  11. I. Ekeland, Sur les problems variationnels, C. R. Acad. Sci. Par 275 (1972), 1057-1059.
  12. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
  13. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443-474. https://doi.org/10.1090/S0273-0979-1979-14595-6
  14. L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
  15. D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 2, 876-882. https://doi.org/10.1016/j.jmaa.2007.10.065
  16. D. Ilic and V. Rakocevic, Quasi-contraction on cone metric spaces, Applied Mathematics Letters (2008), doi:10.1016/j.aml.2008.08.001.
  17. S. Jankovic, Z. Kadelburg, S. Radenovic, and B. E. Rhoades, Assad-Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 761086, 16 pp.
  18. G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 643840, 13 pp.
  19. Z. Kadelburg, M. Pavlovic, and S. Radenovic, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010), no. 9, 3148-3159. https://doi.org/10.1016/j.camwa.2010.02.039
  20. Z. Kadelburg, S. Radenovic, and V. Rakocevic, Remaks on Quasi-contraction on a cone metric spaces, Applied Math. Letters 22 (2009), 1674-1679. https://doi.org/10.1016/j.aml.2009.06.003
  21. Z. Kadelburg, S. Radenovic, and B. Rosic, Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Art. ID 173838, 14 pp.
  22. O. Kada, T. Suzuki, and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), no. 2, 381-391.
  23. D. Klim and D. Wardowski, Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear Anal. 71 (2009), no. 11, 5170-5175. https://doi.org/10.1016/j.na.2009.04.001
  24. L. J. Lin andW. S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl. 323 (2006), no. 1, 360-370. https://doi.org/10.1016/j.jmaa.2005.10.005
  25. J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle, Nonlinear Anal. 10 (1986), no. 9, 813-822. https://doi.org/10.1016/0362-546X(86)90069-6
  26. S. Radenovic, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl. 58 (2009), no. 6, 1273-1278. https://doi.org/10.1016/j.camwa.2009.07.035
  27. Sh. Rezapour, R. Haghi, and N. Shahzad, Some notes on fixed points of quasi-contraction maps, Appl. Math. Lett. 23 (2010), no. 4, 498-502. https://doi.org/10.1016/j.aml.2010.01.003
  28. Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008), no. 2, 719-724. https://doi.org/10.1016/j.jmaa.2008.04.049
  29. T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), no. 2, 440-458. https://doi.org/10.1006/jmaa.2000.7151
  30. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
  31. K. Wlodarczyk, R. Plebaniak, and C. Obczynski, Convergence theorems, best approxi-mation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal. 72 (2010), no. 2, 794-805. https://doi.org/10.1016/j.na.2009.07.024
  32. S. K. Yang, J. S. Bae, and S. H. Cho, Coincidence and common fixed and periodic point theorems in cone metric spaces, Comput. Math. Appl. 61 (2011), no. 2, 170-177. https://doi.org/10.1016/j.camwa.2010.10.031
  33. J. Zeng and S. J. Li, An Ekeland's variational principle for set-valued mappings with applications, J. Comput. Appl. Math. 230 (2009), no. 2, 477-484. https://doi.org/10.1016/j.cam.2008.12.014
  34. Z. Zhao and X. Chen, Fixed points of decreasing operators in ordered Banach spaces and applications to nonlinear second order elliptic equations, Comput. Math. Appl. 58 (2009), no. 6, 1223-1229. https://doi.org/10.1016/j.camwa.2009.06.050

Cited by

  1. Multivalued fixed point theorems in tvs-cone metric spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-184