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FIXED POINTS AND VARIATIONAL PRINCIPLE WITH

APPLICATIONS TO EQUILIBRIUM PROBLEMS

ON CONE METRIC SPACES

Jong-Sook Bae and Seong-Hoon Cho

Abstract. The aim of this paper is to establish variational principle on
cone metric spaces and to give some existence theorems of solutions for
equilibrium problems on cone metric spaces. We give some equivalences
of an existence theorem of solutions for equilibrium problems on cone
metric spaces.

1. Introduction

In [11, 12], the author obtained a variational principle, so called Ekeland’s
variational principle. It is one of the most important results obtained in non-
linear analysis, and is useful tools to solve problems in optimization, opti-
mal control theory, game theory, nonlinear equations and dynamical systems
[5, 6, 10, 12, 13, 30].

It was known that Petal’s theorem, Daneš’s drop theorem, Krasnoselskii-
Zabrjeko and Caristi’s fixed point theorem are equivalent to Ekeland’s varia-
tional principle (see [25] and references therein). Since this variational principle
was proved, there have appeared many extensions and equivalence formulations
of Ekeland’s variational principle (see [1, 22, 24, 29]).

Recently, the author [14] introduced the notion of cone metric spaces as a
generalization of metric spaces. They introduced the concept of convergence
in cone metric spaces and obtained some fixed point theorems for contractive
mappings defined on cone metric spaces.

In this paper, we obtain an extension of Ekeland’s variational principle to
cone metric spaces. We present Caristi’s fixed point theorem, Takahashi’s min-
imization theorem and an equilibrium version of Ekeland’s variational principle
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in the setting of complete cone metric spaces. And then we prove that these
results and Ekeland’s variational principle are equivalent. We establish some
existence theorems of solution for equilibrium problem on cone metric spaces
without any convexity assumption. And then, we obtain some equivalences of
an existence theorem of solution for equilibrium problem on cone metric spaces.

2. Preliminaries

Consistent with Huang and Zhang [14], the following definitions will be
needed in the sequel.

Let E be a topological vector space. A subset P of E is a cone if the following
conditions are satisfied:

(i) P is non-empty closed and P 6= {0},
(ii) ax+ by ∈ P , whenever x, y ∈ P and a, b ∈ R (a, b ≥ 0),
(iii) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P

by x ≤ y if and only if y − x ∈ P . We write x < y to indicate that x ≤ y but
x 6= y.

For x, y ∈ E, x ≪ y stand for y − x ∈ int(P ), where int(P ) is the interior
of P . A cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if {un} is a sequence such that for some
z ∈ E

u1 ≤ u2 ≤ · · · ≤ z,

then there exists u ∈ E such that

lim
n→∞

un = u.

Equivalently, a cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent.

If E is a normed space, a cone P is called normal whenever there exists a
number M > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ M‖y‖.

It is well known that every regular cone in a normed space is normal (see
[14, 28]).

A cone P is complete if every upper bounded non-empty subset A of E,
supA exists in E. Equivalently, a cone P is complete if every lower bounded
non-empty subset A of E, inf A exists in E.

If E is a normed space, a complete cone P is continuous whenever, for any
upper bounded chain {xα : α ∈ Γ}, sup{‖xα − sup{xβ : β ∈ Γ}‖ : α ∈ Γ} = 0.

Equivalently, if E is a normed space, a complete cone P is continuous when-
ever, for any lower bounded chain {xα : α ∈ Γ}, inf{‖xα − inf{xβ : β ∈ Γ}‖ :
α ∈ Γ} = 0.

Note that if E is a normed space and P is complete and continuous, then
for every non-increasing (resp. non-decreasing) sequence {xn} ⊂ P bounded
from below (resp. above), we have limn→∞ xn = infn xn (resp. limn→∞ xn =
supn xn).
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The authors [2, 3, 8, 14, 15, 16, 26, 31, 34] obtained fixed point theorems
on cone metric spaces under assumption that the cone is normal. Also, the
authors [7, 23, 32] proved fixed point results under assumption that the cone is
regular. And the authors [4, 9, 17, 18, 19, 21, 20, 27, 28] do not use the notion
of normality or regularity to obtain their results on cone metric spaces.

In this paper, we use the concept of regularity to obtain our results.
Without special mention, we assume that E is a normed space, P is a cone

in E with int(P ) 6= ∅ and ≤ is a partial ordering with respect to P . Also, we
assume that 2E (resp. K(E)) is the family of all non-empty (resp. non-empty
compact) subsets of E.

For a non-empty set X , a mapping d : X×X → E is called cone metric [14]
on X if the following conditions are satisfied:

(i) 0 ≤ d(x, y) for all x, y ∈ X , and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X ,
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
Let (X, d) be a cone metric space. A sequence {xn} of points in X converges

[14] to a point x ∈ X (denoted by limn→∞ xn = x or xn → x) if for any
c ∈ int(P ), there exists N ∈ N such that for all n > N , d(xn, x) ≪ c. A
sequence {xn} of points in X is Cauchy [14] if for any c ∈ int(P ), there exists
N ∈ N such that for all n,m > N , d(xn, xm) ≪ c. (X, d) is called complete if
every Cauchy sequence is convergent.

Note that if limn→∞ d(xn, x) = 0, then limn→∞ xn = x. The converse
is true if E is a normed space and P is a normal cone. Also, note that if
limn,m→∞ d(xn, xm) = 0, then {xn} is a Cauchy sequence in X . If E is a
normed space and P is a normal cone, then {xn} is a Cauchy sequence in X if
and only if limn,m→∞ d(xn, xm) = 0.

Let (X, d) be a cone metric (or metric) space. A subset A of X is called
sequentially closed if for any sequence {xn} ⊂ X with limn→∞ xn = x, we have
x ∈ A. A subset A of X is sequentially compact if every sequence in X has
a convergent subsequence. A mapping g : X → E is sequentially continuous

at x ∈ X if, for any sequence {xn} ⊂ X with limn→∞ xn = x, we have
limn→∞ gxn = gx. A set-valued mapping F : X → 2E is called bounded from

below if there exists z ∈ E such that Fx − z ⊂ P for all x ∈ X . A set-
valued mapping F : X → 2E is called sequentially lower semi-continuous at
x0 ∈ X if, for any closed subset C of E and for any sequence {xn} ⊂ X with
limn→∞ xn = x0, there exists N ∈ N such that, for all n > N , Fxn 6⊂ C

whenever Fx0 6⊂ C.
When F is sequentially lower semi-continuous at each point in X , we say

that F is sequentially lower semi-continuous.
A set-valued mapping F : X → 2E is sequentially upper semi-continuous at

x0 ∈ X if, for any closed subset C of E and for any sequence {xn} ⊂ X with
limn→∞ xn = x0, there exists N ∈ N such that, for all n > N , Fxn ∩ C = ∅
whenever Fx0 ∩C = ∅.
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We say that F is sequentially upper semi-continuous if F is sequentially
upper semi-continuous at each point in X .

Example 2.1. Let X = R, E = R
2 and P = R

2
+. We define a set-valued

mapping F : X → 2E by

Fx =

{

{(0, 0)}, if x = 0;

{(−|x|, 0), (0,−|x|)}, if x 6= 0.

Then F is sequentially lower semi-continuous and sequentially upper semi-
continuous.

We have the following properties of sequentially lower semi-continuous and
sequentially upper semi-continuous, respectively.

Lemma 2.1. A set-valued mapping F : X → 2E is sequentially lower semi-

continuous if and only if the set L(C) = {x ∈ X : Fx ⊂ C} is sequentially

closed for all closed subset C of E.

Proof. Let C be a closed subset of E. Suppose that L(C) is sequentially closed.
Let x0 ∈ X be fixed, and let {xn} be any sequence of points in X such that
limn→∞ xn = x0. If Fx0 6⊂ C, then x0 6∈ L(C). Since L(C) is sequentially
closed, there exists N ∈ N such that xn 6∈ L(C) for all n > N . Thus, Fxn 6⊂ C

for all n > N . Hence F is sequentially lower semi-continuous on X .
Assume that F is sequentially lower semi-continuous on X . Let C be any

fixed closed subset of E, and let {xn} be a sequence of points in L(C) such that
limn→∞ xn = x0. If x0 6∈ L(C), then Fx0 6⊂ C. Since F is sequentially lower
semi-continuous at x0, there exists N ∈ N such that Fxn 6⊂ C for all n > N .
Thus, xn 6∈ L(C) for all n > N , which is a contradiction. Hence x0 ∈ L(C),
and hence L(C) is sequentially closed. �

Lemma 2.2. A set-valued mapping F : X → 2E is sequentially upper semi-

continuous if and only if the set U(C) = {x ∈ X : Fx ∩ C 6= ∅} is sequentially

closed for all closed subset C of E.

Proof. The proof is similar as proof of Lemma 2.1. �

Lemma 2.3. If a set valued mapping F : X → 2E is sequentially lower semi-

continuous and a mapping g : X → E is sequentially continuous, then F + g is

sequentially lower semi-continuous.

Proof. Suppose that F + g is not sequentially lower semi-continuous. Then
there exists a closed subset C of E such that L(C) = {x ∈ X : Fx+ gx ⊂ C}
is not sequentially closed. Then there exists a sequence {xn} ⊂ L(C) with
limn→∞ xn = z such that z 6∈ L(C).

Since Fz 6⊂ −gz + C, there exists y ∈ Fz such that y 6∈ −gz + C. Then
there exists ǫ > 0 such that

B(y, ǫ) ∩ (−gz + C) = ∅,
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where B(y, ǫ) = {x ∈ X : ‖x− y‖ < ǫ}.
Since Fz 6⊂ E − B(y, ǫ

2 ) and F is sequentially lower semi-continuous and g

is sequentially continuous, there exists N ∈ N such that, for all n > N ,

Fxn ∩B(y,
ǫ

2
) 6= ∅

and
‖gxn − gz‖ <

ǫ

2
.

If Fxn ⊂ −gxn + C for some n > N , then there exists y1 ∈ Fxn ∩ B(y, ǫ
2 )

such that y1 = −gxn+c1 for some c1 ∈ C, and ‖c1−y1−gz‖ < ǫ
2 . Thus we have

‖y−(−gz+c1)‖ ≤ ‖y−y1‖+‖y1+gz−c1‖ < ǫ. Hence −gz+c1 ∈ B(y, ǫ
2 ), which

is a contradiction, because B(y, ǫ) ∩ (−gz + C) = ∅. Thus Fxn 6⊂ −gxn + C

for all n > N , and so xn 6∈ L(C) for all n > N , which is a contradiction. �

For A ⊂ E and x ∈ E, we denote ρ(x,A) = inf{‖x− y‖ : y ∈ A}.

Lemma 2.4. If a set valued mapping F : X → K(E) is sequentially upper

semi-continuous and a mapping g : X → E is sequentially continuous, then

F + g is sequentially upper semi-continuous.

Proof. Suppose that F + g is not sequentially upper semi-continuous. Then
there exists a closed subset C of E such that U(C) = {x ∈ X : Fx+gx∩C 6= ∅}
is not sequentially closed. Then there exists a sequence {xn} ⊂ U(C) with
limn→∞ xn = z such that z 6∈ U(C). Thus, Fz ∩ (−gz + C) = ∅.

Let ǫ = inf{ρ(x,−gz+C) : x ∈ Fz}. Then since Fz is compact and −gz+C

is closed, we have ǫ > 0. Let V = {x ∈ E : ρ(x, Fz) < 1
2ǫ}. Then

V ∩ (−gz + C) = ∅

and
Fz ∩ (E − V ) = ∅.

Since F is sequentially upper semi-continuous and g is sequentially contin-
uous, there exists N ∈ N such that, for all n > N ,

Fxn ⊂ V

and

‖gxn − gz‖ <
1

2
ǫ.

If Fxn + gxn ∩C 6= ∅ for some n > N , then there exists u ∈ Fxn such that
u+ gxn = c1 for some c1 ∈ C. Hence u = −gxn + c1 ∈ V . Thus we have

ρ(−gz + c1, F z) ≤ ‖ − gz + c1 − u‖+ ρ(u, Fz) = ‖gxn − gz‖+ ρ(u, Fz) < ǫ,

which is a contradiction.
Hence Fxn+gxn∩C = ∅ for all n > N , and hence {xn}n>N 6⊂ U(C), which

is a contradiction. �

Lemma 2.5 ([14]). Let (X, d) be a cone metric space such that P is normal.

Then, for each x ∈ X, d(x, ·) is sequentially continuous.
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3. Fixed point theorems

In this section, we obtain a fixed point theorem for set-valued mappings,
which is closely related with the Ekeland’s variational principle.

Lemma 3.1. Let (X, d) be a cone metric space, and let {xn} be a sequence in X

such that limn→∞ xn = x ∈ X. Suppose that a set valued mapping T : X → 2X

satisfies the following conditions:
(1) xn+1 ∈ Txn and Txn+1 ⊂ Txn for all n ≥ 1;
(2) limn→∞ sup{‖d(xn, u)‖ : u ∈ Txn} = 0;
(3) x ∈ Txn for all n ≥ 1.

Then
⋂

n≥1 Txn = {x}.
If, in addition

(4) Tx 6= ∅ and Tx ⊂ Txn for all n ≥ 1,
then Tx = {x}.

Proof. From (3), we have x ∈
⋂

n≥1 Txn. If u ∈
⋂

n≥1 Txn, then

lim
n→∞

‖d(xn, u)‖ = 0

by (2). Hence limn→∞ d(xn, u) = 0, and hence limn→∞ xn = u. Thus x = u,
and so

⋂

n≥1 Txn = {x}.

Suppose that (4) is satisfied. Then Tx ⊂
⋂

n≥1 Txn = {x}. Since Tx 6= ∅,
Tx = {x}. �

Let (X, d) be a cone metric space, and let F : X ×X → 2E be a mapping.
We define a relation ⊳ on X as follows: for any x, y ∈ X ,

y ⊳ x if and only if F (x, y) + d(x, y) ⊂ −P.(3.1)

For each x ∈ X , we denote S(x) = {y ∈ X : y ⊳ x}.
Let (X, d) be a cone metric space, and let F : X ×X → 2E be a set valued

mapping. Consider the following conditions, respectively.
(F1) 0 ∈ F (x, x) and F (x, x) ⊂ −P for all x ∈ X .
(F2) F (x, y) ⊂ F (x, z) + F (z, y)− P for all x, y, z ∈ X .
(F3) F (x, ·) is bounded from below for each x ∈ X .
(F4) F (x, ·) is sequentially lower semi-continuous for each x ∈ X .

Lemma 3.2. Let (X, d) be a cone metric space such that P is regular. Suppose

that a set valued mapping F : X×X → 2E satisfies (F1), (F2), (F3) and (F4).
If ⊳ is a relation defined as (3.1), then we have the followings.

(a) ⊳ is a preodering on X ;
(b) For each x ∈ X, S(x) is sequentially closed in (X, d);
(c) S(y) ⊂ S(x) whenever y ∈ S(x) for x, y ∈ X ;
(d) For each x ∈ X, {d(x, y) : y ∈ S(x)} is bounded;
(e) If xn+1 ⊳ xn for all n ≥ 0, then

∑∞

n=0 d(xn, xn+1) is convergent.
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Proof. Let ⊳ be the relation defined as (3.1). Then from (F1) x ⊳ x for each
x ∈ X . Let x ⊳ y and y ⊳ z for x, y, z ∈ X . Then F (y, x) + d(y, x) ⊂ −P and
F (z, y) + d(z, y) ⊂ −P .

Since F (z, x) ⊂ F (z, y) + F (y, x)− P , we obtain

F (z, x) + d(y, x) + d(y, z) ⊂ F (z, y) + F (y, x) + d(y, x) + d(y, z)− P

⊂ −P.

Because d(x, z)−d(y, x)−d(y, z) ∈ −P , F (z, x)+d(z, x) ⊂ −P . Thus x⊳ z.
Hence (a) is proved.

For each x ∈ X , since d(x, ·) + F (x, ·) is sequentially lower semi-continuous,
S(x) is sequentially closed, and so (b) is proved.

Let y ∈ S(x) and z ∈ S(y). Then y ⊳ x and z ⊳ y. Thus we have z ⊳ x, and
so z ∈ S(x). Hence S(y) ⊂ S(x), and (c) is proved.

Let x ∈ X and y ∈ S(x). Then y ⊳ x, and so F (x, y) + d(x, y) ⊂ −P . Hence
d(x, y) ∈ −F (x, y) + (−P ). By (F3), F (x, y) is bounded from below. Thus
there exists z ∈ E such that F (x, y) − z ⊂ P . Thus F (x, y) ⊂ z + P . Hence
d(x, y) ∈ −z − P , and hence 0 ≤ d(x, y) ≤ −z. Thus {d(x, y) : y ∈ S(x)} is
bounded.

Finally, we show that (e) is satisfied.
Let xn+1 ⊳ xn for all n ≥ 0. Then F (xk, xk+1) + d(xk, xk+1) ⊂ −P , and so

∑n

k=1 F (xk, xk+1)+
∑n

k=1 d(xk, xk+1) ⊂ −P . By (F2), we have F (x1, xn+1) ⊂
∑n

k=1 F (xk, xk+1) − P . Thus we obtain F (x1, xn+1) ⊂ −
∑n

k=1 d(xk, xk+1) −
P , and so

∑n

k=1 d(xk, xk+1) ⊂ −F (x1, xn+1) − P . From (F3) there exists
z ∈ E such that F (x1, xn+1) − z ⊂ P . Hence we have

∑n

k=1 d(xk, xk+1) ∈
−z − P , and hence

∑n

k=1 d(xk, xk+1) ≤ −z for all n ≥ 1. Since P is regular,
∑∞

n=0 d(xn, xn+1) is convergent. �

Theorem 3.1. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4).
If ⊳ is a preodering defined as (3.1), then for each x0 ∈ X there exists x ∈ X

such that x ∈ S(x0) and S(x) = {x}.

Proof. Let x0 ∈ X be fixed. We can choose x1 ∈ S(x0) by Lemma 3.2(d) such
that

1

2
sup{‖d(x0, u)‖ : u ∈ S(x0)} ≤ ‖d(x0, x1)‖.

Again, we choose x2 ∈ S(x1) such that

1

2
sup{‖d(x1, v)‖ : v ∈ S(x1)} ≤ ‖d(x1, x2)‖.

Inductively, we can choose a sequence {xn} of points in X such that

xn+1 ∈ S(xn) and
1

2
sup{‖d(xn, w)‖ : w ∈ S(xn)} ≤ ‖d(xn, xn+1)‖(3.2)

for all n ≥ 1.
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From Lemma 3.2(c), we have S(xn+1) ⊂ S(xn) for all n ≥ 0. Hence condi-
tion (1) of Lemma 3.1 is satisfied.

From Lemma 3.2(e),
∑∞

k=1 d(xk, xk+1) is convergent. Thus, for any c ∈
int(P ), there exists n0 ∈ N such that

∑

k>n0
d(xk, xk+1) ≪ c, and so d(xn, xm)

≪ c for all m > n > n0. Hence {xn} is a Cauchy sequence in X . Since X is
complete, there exists x ∈ X such that limn→∞ xn = x. From (3.2) we have
lim sup{‖d(xn, w)‖ : w ∈ S(xn)} = 0. Hence condition (2) of Lemma 3.1 is
satisfied.

From Lemma 3.2(b), S(xn) is sequentially closed for all n ≥ 0. Since
{xk+1}k≥n ⊂ S(xn), x ∈ S(xn) for all n ≥ 0. Hence x ∈ S(x0).

From Lemma 3.2(c), S(x) ⊂ S(xn) for all n ≥ 0. Thus all conditions of
Lemma 3.1 are satisfied, and from Lemma 3.1 S(x) = {x}. �

Theorem 3.2. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4).
Assume that a set valued mapping T : X → 2X satisfies the following

condition: for each x ∈ X, there exists y ∈ Tx such that

(3.3) F (x, y) + d(x, y) ⊂ −P.

Then T has a fixed point in X.

Proof. We define a preordering ⊳ as (3.1). From Theorem 3.1 there exists x ∈ X

such that S(x) = {x}. From (3.3), there exists z ∈ Tx such that z ⊳ x. Hence
z ∈ S(x), and hence z = x. Thus, x ∈ Tx. �

Remark 3.1. If d is a complete metric (resp. cone metric) on a set X , then for
each ǫ > 0, ǫd is also a complete metric (resp. cone metric) on a set X .

From Remark 3.1 and Theorem 3.2 we have the following result.

Corollary 3.3. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4).
Assume that a set valued mapping T : X → 2X satisfies the following

condition: for each ǫ > 0 and for each x ∈ X, there exists y ∈ Tx such that

F (x, y) + ǫ d(x, y) ⊂ −P.

Then T has a fixed point in X.

From Theorem 3.2 and Corollary 3.3 we obtain the following two corollaries,
respectively.

Corollary 3.4. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4).
Assume that a mapping f : X → X satisfies the following condition:

F (x, fx) + d(x, fx) ⊂ −P
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for each x ∈ X. Then f has a fixed point in X.

Corollary 3.5. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4).
Assume that a mapping f : X → X satisfies the following condition:

F (x, fx) + ǫ d(x, fx) ⊂ −P

for each ǫ > 0 and for each x ∈ X. Then f has a fixed point in X.

Remark 3.2. Let (X, ρ) be a complete metric space and e ∈ int(P ) be fixed.
Then ρ(·, ·)e is a complete cone metric on X . Also, K = {re : r ≥ 0} is a
complete and regular cone.

From Remark 3.2 and Theorem 3.2 we obtain the following results.

Corollary 3.6. Let (X, ρ) be a complete metric space. Suppose that a set

valued mapping F : X ×X → 2E satisfies (F1), (F2), (F3) and (F4).
Assume that a set valued mapping T : X → 2X satisfies the following

condition: for each x ∈ X, there exists y ∈ Tx such that

F (x, y) + ρ(x, y)e ⊂ −P.

Then T has a fixed point in X.

4. Ekeland type variational principle

In this section, we give an Ekeland’s variational principle for set-valued
mappings, which is closely realated with generalized equilibrium problems.

Theorem 4.1. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4). Then, for every x0 ∈ X, there exists x ∈ X

such that

(a) F (x0, x) + d(x0, x) ⊂ −P ,

(b) F (x, x) + d(x, x) 6⊂ −P for all x 6= x.

Proof. Let ⊳ be a preodering defined as (3.1), and let x0 ∈ X . Then from
Theorem 3.1 there exists x ∈ X such that x ∈ S(x0) and S(x) = {x}.

Since x ∈ S(x0), from (3.1) we obtain

F (x0, x) + d(x0, x) ⊂ −P.

For all x 6= x, x 6∈ S(x). Thus we have

F (x, x) + d(x, x) 6⊂ −P. �

Corollary 4.2. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4). Then, for each ǫ > 0 and for every x0 ∈ X,

there exists x ∈ X such that
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(a) F (x0, x) + ǫ d(x0, x) ⊂ −P ,

(b) F (x, x) + ǫ d(x, x) 6⊂ −P for all x 6= x.

Theorem 4.3. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4). Then the following are equivalent.

(a) Ekeland type variational principle: For every x0 ∈ X, there exists x ∈ X

such that x ∈ S0 = {x ∈ X : F (x0, x)+d(x0, x) ⊂ −P} and F (x, x)+d(x, x) 6⊂
−P for all x 6= x.

(b) Caristi-Kirk type fixed point theorem: Let T : X → 2X be a set-valued

mapping such that, for every x∗ ∈ S0, there exists x ∈ Tx∗ satisfying F (x∗, x)+
d(x∗, x) ⊂ −P . Then there exists x ∈ S0 such that x ∈ Tx.

(c) Oettli and Théra type theorem: Let D ⊂ X such that, for every x∗ ∈
S0\D, there exists x ∈ X such that x 6= x∗ and F (x∗, x) + d(x∗, x) ⊂ −P .

Then there exists x ∈ S0 ∩D.

Proof. (a)⇒(c): Suppose that (a) and the hypothesis of (c) are satisfied.
Suppose that S0∩D = ∅. By (a), there exists x ∈ S0 and F (x, x)+d(x, x) 6⊂

−P for all x 6= x. Since S0 ∩ D = ∅, x ∈ S0\D. By the hypothesis of (c),
there exists x ∈ X such that x 6= x and F (x, x) + d(x, x) ⊂ −P , which is a
contradiction.

(c)⇒(a): Assume that (c) is satisfied. For every x0 ∈ X , let G(x0) = {x ∈
X : F (x0, x) + d(x0, x) ⊂ −P, x 6= x0}. Let D = {x0 : G(x0) = ∅}. If
x0 6∈ D, then G(x0) 6= ∅. Hence there exists x ∈ G(x0), and so x 6= x0 and
F (x0, x)+ d(x0, x) ⊂ −P . Thus the hypothesis of (c) is satisfied. By (c), there
exists x ∈ S0 ∩D. Thus x ∈ S0 and F (x, x) + d(x, x) 6⊂ −P for all x 6= x.

(b)⇒(c): Suppose that (b) and the hypothesis of (c) are satisfied.
Let Tx∗ = {x ∈ X : x 6= x∗}. Suppose that S0∩D = ∅. Then for all x ∈ S0,

x 6∈ D. By the hypothesis of (c), for every x∗ ∈ S0\D, there exists x ∈ X such
that x 6= x∗ and F (x∗, x)+d(x∗, x) ⊂ −P . That is, for all x∗ ∈ S0, there exists
x ∈ X such that x ∈ Tx∗ and F (x∗, x) + d(x∗, x) ⊂ −P . By (b), there exists
x ∈ S0 such that x ∈ Tx, and hence x 6= x, which is a contradiction.

(c)⇒(b): Suppose that (c) and the hypothesis of (b) are satisfied.
Suppose that x 6∈ Tx for all x ∈ X . Let D = {x ∈ X : x ∈ Tx}. Then

D = ∅. By the hypothesis of (b), for every x∗ ∈ S0, there exists x ∈ Tx∗

satisfying F (x∗, x) + d(x∗, x) ⊂ −P . Since D = ∅, x∗ ∈ S0\D, and x 6= x∗. By
(c), there exists x ∈ S0 ∩D. Hence D 6= ∅, which is a contradiction. �

From Remark 3.2 and Theorem 4.1 we have the following result.

Corollary 4.4. Let (X, ρ) be a complete metric space. Suppose that a set

valued mapping F : X × X → 2E satisfies (F1), (F2), (F3) and (F4). Then,

for every x0 ∈ X, there exists x ∈ X such that

(a) F (x0, x) + ρ(x0, x)e ⊂ −K,

(b) F (x, x) + ρ(x, x)e 6⊂ −K for all x 6= x.

From Remark 3.1 and Corollary 4.4 we obtain the following result.
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Corollary 4.5 ([33]). Let (X, ρ) be a complete metric space. Suppose that a

set valued mapping F : X×X → 2E satisfies (F1), (F2), (F3) and (F4). Then,
for each ǫ > 0 and for every x0 ∈ X, there exists x ∈ X such that

(a) F (x0, x) + ǫ ρ(x0, x)e ⊂ −K,

(b) F (x, x) + ǫ ρ(x, x)e 6⊂ −K for all x 6= x.

5. Equilibrium problems

Let K be a non-empty subset of a cone metric space (X, d), and let F :
K × K → 2E be a mapping. By an equilibrium problem, we understand the
problem of finding x ∈ K such that

(5.1) F (x, x) ⊂ P for all x ∈ K.

We consider some possible cases of equilibrium problems as follows:
the problem of finding x ∈ K such that

(5.2) F (x, x) ⊂ E − int(−P ) for all x ∈ K,

the problem of finding x ∈ K such that

(5.3) F (x, x) 6⊂ int(−P ) for all x ∈ K,

the problem of finding x ∈ K such that

(5.4) F (x, x) ∩ (E − int(−P )) 6= ∅ for all x ∈ K.

Note that x is a solution of (5.1) ⇒ x is a solution of (5.2) ⇒ x is a solution of
(5.3) ⇔ x is a solution of (5.4).

Let K be a non-empty subset of a cone metric space (X, d), and let F :
K ×K → 2E be a mapping and ǫ > 0. A point x ∈ K is called an ǫ-solution
of equilibrium problem (5.1) if

F (x, x) + ǫ d(x, x) ⊂ P

for all x ∈ K.
Without any convexity assumption, we study on existence theorems of so-

lution for equilibrium problem (5.1) on cone metric spaces.

Theorem 5.1. Let (X, d) be a cone metric space, and let K be a sequentially

compact subset of X. Suppose that a mapping F : K × K → 2E satisfies the

following conditions:
(1) for each y ∈ K, F (·, y) is sequentially lower semi-continuous.

(2) for each ǫ > 0, there exists an ǫ-solution x ∈ K of equilibrium problem

(5.1). That is, there exists x ∈ K such that

F (x, y) + ǫ d(x, y) ⊂ P

for all y ∈ K. Then there exists a solution x ∈ K of equilibrium problem (5.1).
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Proof. By (2), for each n ∈ N, there exists xn ∈ K such that

F (xn, y) +
1

n
d(xn, y) ⊂ P

for all y ∈ X .
Since K is sequentially compact, we may assume that there exists x ∈ K

such that limn→∞ xn = x.

For fixed y ∈ K and for fixed n ∈ N, let Ln,y(P ) = {x ∈ K : F (x, y) +
1
n
d(x, y) ⊂ P}. By Lemma 2.3 and Lemma 2.5, F (·, y)+ 1

n
d(·, y) is sequentially

lower semi-continuous. By applying Lemma 2.1, Ln,y(P ) is sequentially closed.
For m > n, we obtain

F (xm, y)+
1

n
d(xm, y) = F (xm, y)+

1

m
d(xm, y)+(

1

n
−

1

m
)d(xm, y) ⊂ P+P = P.

Thus, {xm}m>n ⊂ Ln,y(P ), and so x ∈ Ln,y(P ) for all y ∈ K and for all
n ∈ N. Hence F (x, y) + 1

n
d(x, y) ⊂ P .

By letting n → ∞ in above inequality, we have F (x, y) ⊂ P for all y ∈ K. �

Let (X, d) be a cone metric space. We say that x0 ∈ X satisfies property
(B.C) if every sequence {xn} ⊂ X satisfying F (x0, xn) ⊂ −P for all n ∈ N and
F (xn, x) +

1
n
d(xn, x) 6⊂ −P for all x ∈ X and for all n ∈ N, has a convergent

subsequence.

Theorem 5.2. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X ×X → K(E)
satisfies (F1), (F2), (F3) and (F4), and F (·, y) is sequentially upper semi-

continuous for each y ∈ X. If some x0 ∈ X satisfies property (B.C), then

equilibrium problem (5.4) has a solution.

Proof. Let ǫ = 1
n
in Corollary 4.2. Then for each n ∈ N and for each x0 ∈ X ,

there exists xn ∈ X such that F (x0, xn) +
1
n
d(x0, xn) ⊂ −P and F (xn, x) +

1
n
d(xn, x) 6⊂ −P for all x ∈ X .

Since − 1
n
d(x0, xn) ∈ −P , F (x0, xn) ⊂ −P for all n ∈ N. Hence x0 is

satisfying condition (B.C), and so there exists a subsequence {xn(k)} of {xn}
such that limk→∞ xn(k) = x for some x ∈ X .

For fixed y ∈ K and for fixed n(k) ∈ N, let
Un(k),y(E−int(−P )) = {x ∈ K : F (x, y)+ 1

n(k)d(x, y)∩(E−int(−P )) 6= ∅}.

By Lemma 2.4 and Lemma 2.5, F (·, y)+ 1
n(k)d(·, y) is sequentially upper semi-

continuous. By applying Lemma 2.2, Un(k),y(E − int(−P )) is sequentially
closed.

Form(k) > n(k), since F (xm(k), y)+
1

m(k)d(xm(k), y) 6⊂ −P and −P−( 1
n(k)−

1
m(k) )d(xm(k), y) = −P , we obtain

F (xm(k), y) +
1

n(k)
d(xm(k), y)
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=F (xm(k), y) +
1

m(k)
d(xm(k), y) + (

1

n(k)
−

1

m(k)
)d(xm(k), y)

6⊂ − P.

Hence we have F (xm(k), y) +
1

n(k)d(xm(k), y) 6⊂ int(−P ), and hence,

F (xm(k), y) +
1

n(k)
d(xm(k), y) ∩ (E − int(−P )) 6= ∅.

Thus, {xm(k)}m(k)>n(k) ⊂ Un(k),y(E − int(−P )). So x ∈ Un,y(E − int(−P ))

for all y ∈ K. Hence F (x, y) + 1
n(k)d(x, y) ∩ (E − int(−P )) 6= ∅.

By letting k → ∞ in above inequality, we have F (x, y)∩ (E − int(−P )) 6= ∅
for all y ∈ K. �

Theorem 5.3. Let (X, d) be a complete cone metric space such that P is

complete and regular. Suppose that a set valued mapping F : X × X → 2E

satisfies (F1), (F2), (F3) and (F4). For every x0 ∈ X, let S0 = {x ∈ X :
F (x0, x) + d(x0, x) ⊂ −P}. Then the following are equivalent.

(a) Existence of solution for equilibrium problem: Assume that, for every

x∗ ∈ S0, there exists y ∈ X such that y 6= x∗ and F (x∗, y) + d(x∗, y) ⊂ −P .

Then there exists x ∈ S0 such that F (x, x) ⊂ P for all x ∈ X.

(b) Oettli and Théra type theorem: Let D ⊂ X such that, for every x∗ ∈
S0\D, there exists x ∈ X such that x 6= x∗ and F (x∗, x) + d(x∗, x) ⊂ −P .

Then there exists x ∈ S0 ∩D.

Proof. (a)⇒(b): Suppose that (a) and the hypothesis of (b) are satisfied. Then
there exists x ∈ S0 such that F (x, x) ⊂ P for all x ∈ X .

Suppose that S0 ∩D = ∅. Then x ∈ S0\D. By the hypothesis of (b), there
exists y ∈ X such that y 6= x and F (x, y)+ d(x, y) ⊂ −P . Thus F (x, y) ⊂ −P .
Hence we have F (x, y) = {0}. Hence d(x, y) ∈ −P , and hence x = y, which is
a contradiction.

(b)⇒(a): Suppose that (b) and the hypothesis of (a) are satisfied. Let
D = {x ∈ X : F (x, y) ⊂ P for all y ∈ X}. By the hypothesis of (a), for all
x∗ ∈ S0\D, there exists x ∈ X such that x 6= x∗ and F (x∗, x)+d(x∗, x) ⊂ −P .
By (b), there exists x ∈ S0∩D. Hence x ∈ D and F (x, y) ⊂ P for all y ∈ X . �

From Remark 3.2, Theorem 4.3 and Theorem 5.3 we have the following
result.

Corollary 5.4. Let (X, ρ) be a complete metric space. Suppose that a set

valued mapping F : X ×X → 2E satisfies (F1), (F2), (F3) and (F4). Then the

following are equivalent.

(a) Ekeland type variational principle: For every x0 ∈ X, there exists x ∈ X

such that x ∈ M0 = {x ∈ X : F (x0, x) + ρ(x0, x)e ⊂ −K} and F (x, x) +
ρ(x, x)e 6⊂ −K for all x 6= x.
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(b) Caristi-Kirk type fixed point theorem: Let T : X → 2X be a set-

valued mapping such that, for every x∗ ∈ M0, there exists x ∈ Tx∗ satisfying

F (x∗, x) + ρ(x∗, x)e ⊂ −K. Then there exists x ∈ X such that x ∈ Tx.

(c) Oettli and Théra type theorem: Let D ⊂ X such that, for every x∗ ∈
M0\D, there exists x ∈ X such that x 6= x∗ and F (x∗, x) + ρ(x∗, x)e ⊂ −K.

Then there exists x ∈ M0 ∩D.

(d) Existence of solution for equilibrium problem: Assume that, for every

x∗ ∈ M0, there exists y ∈ X such that y 6= x∗ and F (x∗, y) + ρ(x∗, y)e ⊂ −K.

Then there exists x ∈ M0 such that F (x, x) ⊂ K for all x ∈ X.
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metric spaces, Applied Math. Letters 22 (2009), 1674–1679.
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