DOI QR코드

DOI QR Code

Plant regeneration and transformation of grape (Vitis labrusca L.) via direct regeneration method

포도 (Vitis labrusca L.)의 직접 재분화 방법을 이용한 식물체 재분화와 형질전환

  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Dae Hyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyun Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jeong Hee (Apple Research Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lim, Sun-Hyung (Metabolic Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Ki Ok (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Hyang Bun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Do, Kyung Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Hwang, Hae Seong (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김대현 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김현란 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김정희 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 임선형 (농촌진흥청 국립농업과학원 생물소재공학과) ;
  • 김기옥 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 이향분 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 도경란 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 황해성 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2013.11.16
  • Accepted : 2013.11.27
  • Published : 2013.12.31

Abstract

Efficient regeneration methods and transformation system are a priority for successful application of genetic engineering to vegetative propagated plants such as grape (Vitis labrusca L.). This research is to establish shoot regeneration system from plant explants for 'Campbell Early', 'Tamnara', 'Heukgoosul', 'Heukbosek' using two types of plant growth regulators supplemented to medium. The highest adventitious shoot regeneration rate of 5% was achieved on a medium containing of Murashige and Skoog (MS) inorganic salts and Linsmaier and Skoog (LS) vitamins, 2 mg/L of TDZ and 0.1 mg/L of IBA. Leaf tissue of 'Campbell Early', was co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, gus gene as reporter gene and resistance to kanamycin as selective agent, the other Agrobacterium strains, GV3101 containing the vector pB7 WG2D carrying with mPAP1-D gene. mPAP1-D is a regulatory genes of the anthocyanin biosynthetic pathway. 'Campbell Early' harboring mPAP1-D gene was readily able to be selected by red color due to anthocyanin accumulation in the transformed shoot. These results might be helpful for further studies to enhance the transformation efficiency in grape.

포도(Vitis labrusca L.)와 같은 영양번식 작물에서 성공적인 유전자 도입을 위해서는 효율적인 재분화 방법과 형질전환 체계 구축이 중요하다. 본 연구는 식물생장조절물질에 따른 두 가지 종류의 배지를 사용해서 포도의 신초 재분화 체계를 구축하였다. IBA 0.1 mg/L와 TDZ 2 mg/L, IBA 0.1 mg/L와 TDZ 2 mg/L의 조합에 Linsmaier and Skoog(LS) vitamin을 따로 첨가한 Murashige and Skoog (MS) 배지에서 '캠벨얼리', '탐나라', '흑구슬', '흑보석'의 재분화율을 조사하였더니 IBA 0.1 mg/L와 TDZ 2 mg/L를 첨가한 배지에서 '캠벨얼리'의 재분화율이 5%로 나왔다. '캠벨얼리'와 공동배양한 Agrobacterium strain은 CaMV 35S promoter와 GUS reporter 유전자, kanamycin에 저항성을 갖는 유전자가 있는 PBI121 vector가 도입된 LBA 4404와 안토시아닌 생합성을 조절하는 유전자로 알려진 mPAP1D유전자를 가지고 있는 pB7WG2D vector 가 도입된 GV3101이다. 포도와 같은 과수에서 형질전환체를 선발하는 방법으로 항생제 및 제초제 저항성을 대신할 수 있는 방법은 분자육종에 있어 매우 중요하다. mPAP1D유전자가 도입된 '캠벨얼리'의 재분화된 신초는 붉은색으로 쉽게 식별이 될 수 있는데 이는 안토시아닌의 축적 때문이다. 이러한 연구 결과는 앞으로 '캠벨얼리'의 형질전환 효율 향상에 있어 유용하게 이용될 수 있을 것이다.

Keywords

References

  1. Belarmino MM, Mill M (2000) Agrobacterium-mediated genetic transformation of a phalenopsis orchid. Plant Cell Rep 19:435-442 https://doi.org/10.1007/s002990050752
  2. Burrow MD, Chlan CA, Sen P, Murai N (1990) High frequency generation of transgenic tobacco plants after modified leaf disk cocultivation with Agrobacterium tumefaciens. Plant Mol Biol Rep 8:124-139 https://doi.org/10.1007/BF02669766
  3. Chee R, Pool RM (1987) Improved inorganic media constituents for in vitro shoot multiplication of Vitis. Scientia Hort 32:85-95 https://doi.org/10.1016/0304-4238(87)90019-7
  4. Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60:285-292
  5. Goussard PG (1982) Morphological responses of shoot apices of grapevine cultured in vitro effects of cytokinins in routine subculturing. Vitis 21:293-298
  6. Gray DJ, Merdith CP (1992) Grape biotechnology, In: Hammerschlag FA, Litz RE (eds) Biotechnology in perennial fruit crops. CAB International Wallingford, UK pp:229-262
  7. Hoekema A, Hirsh PR, Jooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separatin of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid Nature 303:179-180 https://doi.org/10.1038/303179a0
  8. Huetteman CA, Preece JE (1993) Thidiazuron: A potent cytokine for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105-119 https://doi.org/10.1007/BF01983223
  9. Humara JM, Lopez M, Ordas RJ (1999) Agrobacterium tumefaciensmediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep 19:51-58 https://doi.org/10.1007/s002990050709
  10. Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J (1995) Enhanced Quantitative resistance against fungal disease by combinatorial expression of different barley angifungal proteins in tobacco. Plnat J 8:101-113
  11. Jefferson RA, Kavanaugh TA, Bevan NH (1987) GUS fusions: ${\beta}$-glucuroindase as a sensitive and versatile gene fusion marker for higher plants. EMBO J 6:3901-3907
  12. Jorge G, Jacqueline GP, Pedro PG (2011) Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L. cv. Albarino) conferred by the EGCCR promoter of Eucalyptus gunnii. Plant Physiol Biochem 49:413-419 https://doi.org/10.1016/j.plaphy.2011.02.005
  13. Kim SH, Kim JH, Kim KO, Do KR, Shin IS, Cho KH, Hwang HS (2011) GUS gene expression and plant regeneration via co-culturing with Agrobacterium in grapevine (Vitis vinifera). J Plant Biotechnol 38:308-314 https://doi.org/10.5010/JPB.2011.38.4.308
  14. Kwon YJ, Lee CH, Hyung NI (2000) Effects of medium composition and culture condition on plant regeneration via organogenesis of Kyoho grape. J Kor Soc Hort Sci 41:276-280
  15. Lee CH (2007) Grape genetic transformation. In; Han JH et al. (eds) Plant genetic transformation, Jungmunkag, Korea pp:391-403.
  16. Lee N, Wetzstein HY (1990) In vitro propagation of muscadine grape by axillary shoot proliferation. J Amer Soc Hort Sci 115:324-329
  17. LI ZT, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol-Plant 42:220-227 https://doi.org/10.1079/IVP2006770
  18. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100-127 https://doi.org/10.1111/j.1399-3054.1965.tb06874.x
  19. Moreno-Sanz P, Loureiro MD, Suarez B (2011) Microsatellite characterization of grapevine (Vitis vinifera L.) genetic diversity in Asturias (Northern Spain). Sci Hortic 129:433-440. https://doi.org/10.1016/j.scienta.2011.04.013
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Nakano M, Hoshino Y, Mii M (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J Exp Bot 45:649-656 https://doi.org/10.1093/jxb/45.5.649
  22. Nayak PS, Rath SP (1997) Direct shoot regeneration from foliar explants of anepiphytic orchid, Acampe praemorsa (Roxb.) Blatter and McCann. Plant Cell Rep 16:583-586
  23. Olhoft PM, Somers DA (2001) L-cysteine increase Agrobacteriummediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706-711 https://doi.org/10.1007/s002990100379
  24. Olmo HP. 1976. Grapes. In: Simmonds NW (ed) Evolution of crop plants. Longman, London. pp 294-298.
  25. Seong ES, Cha JE, Park SW, Yu CY, Song KJ (2003) The effect of Agrobacterium density on transformation efficiency in apple. Korean J Plant Biotechnol 30:215-219 https://doi.org/10.5010/JPB.2003.30.3.215
  26. Smith RH, Hood EE (1995) Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 301-309
  27. Sudarsono, Goldy RG (1991) Growth regulator and axillary bud position effects on in vitro establishment of Vitis rotundifolia. Hort Science 26:304-307
  28. Vancanneyt G, Schimidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron containing marker gene: Splicing of an intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245-250
  29. Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) Highefficiency biolistic co-transformation and regeneration of 'Chardonnay' (Vitis vinifera L.) containing nptII and antimicrobial peptide genes. Plant Cell Rep 22:252-260 https://doi.org/10.1007/s00299-003-0682-x

Cited by

  1. -mediated transformation procedure for grapevine ‘Kyoho’ with carrot antifreeze protein gene vol.44, pp.4, 2017, https://doi.org/10.5010/JPB.2017.44.4.388