References
- C. Becker, J. Salas, K. Tokusei, and J. C. Latombe, "Reliable Navigation Using Landmarks", Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Aichi, 1995, Vol.1, pp. 401-406.
- C. S. Sharp, O. Shakernia and S.S. Sastry, "A Vision System for Landing an Unmanned Aerial Vehicle", Proceedings of IEEE International Conference on Robotics and Automation, 2001, Vol.2, pp. 1720-1727.
- L. S. Coelho and M.F.M. Campos, "Pose Estimation of Autonomous Dirigibles Using Artificial Landmarks", Proceedings of IEEE International Conference on Robotics and Automation, Campinas, Brazil, 1999, pp. 161-170.
- H. Durrant-Whyte and T. Bailey, "Simultaneous Localization and Mapping: Part I", IEEE Robotics & Automation Magazine, 2006, Vol.13, Issue2, pp. 99-110.
- T. Bailey and H. Durrant-Whyte, "Simultaneous Localization and Mapping (SLAM): Part II", IEEE Robotics & Automation Magazine, 2006, Vol.13, Issue3, pp. 108-117. https://doi.org/10.1109/MRA.2006.1678144
- J. Kim, and S. Sukkarieh, "Real-time Implementation of Airborne Inertial-SLAM", Robotics and Autonomous Systems, 2007, Vol.55, Issue1, pp. 62-71. https://doi.org/10.1016/j.robot.2006.06.006
- S. Ahrens, D. Levine, G. Andrews and J.P. How, "Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments", Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 2643-2648.
- M. K. Kaiser, N. R. Gans and W. E. Dixon, "Vision-Based Estimation for Guidance, Navigation, and Control of an Aerial Vehicle", IEEE Transactions on Aerospace and Electronic Systems, 2010, Vol.46, Issue3, pp. 1064-1077. https://doi.org/10.1109/TAES.2010.5545174
- S. Yun, B. Lee, Y. J. Lee and S. Sung "Real-Time Performance Test of an Vision-based Inertial SLAM", Proceedings of International Conference on Control, Automation and Systems, 2010, Gyeonggi-do, Korea, pp. 2423-2426.
- T. Cornall and G. Egan, "Optic flow methods applied to unmanned air vehicles", Academic Research Forum, Dept. Elect. And Computer Systems Engineering, Monash University, Feb, 2003.
- A. Giachetti, M. Campani and V. Torre, "The Use of Optical Flow for Road Navigation", IEEE Transactions Robotics and Automation, 1998, Vol. 14, Issue1, pp. 34-48. https://doi.org/10.1109/70.660838
- W. Ding, J. Wang, S. Han, A. Almagbile, M. A. Garratt, A. Lambert, and J. J. Wang, "Adding Optical Flow into the GPS/INS Integration for UAV navigation", International Global Navigation Satellite Society Symposium, 2009, Surfers Paradise, Qld, Australia.
- S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, "MAV Navigation through Indoor Corridors Using Optical Flow", Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, 2010, pp. 3361-3368.
- F. Kendoul, I. Fantoni, and K. Nonami, "Optic Flow-Based Vision System for Autonomous 3D Localization and Control of Small Aerial Vehicles", Robotics and Autonomous Systems, 2009, Vol.57, Issue 6-7, pp. 591-602. https://doi.org/10.1016/j.robot.2009.02.001
- S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, "A Flexible and Scalable SLAM System with Full 3D Motion Estimation", IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, Kyoto, Japan, pp. 155-160.
- C. Premebida, O. Ludwig and U. Nunes, "LIDAR and Vision-Based Pedestrian Detection System", Journal of Field Robotics, 2009, Vol.26, No. 9, pp. 696-711. https://doi.org/10.1002/rob.20312
- L. Huang and M. Barth, "Tightly-Coupled LIDAR and Computer Vision Integration for Vehicle Detection", IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009, pp. 604-609.
- P. Moghadam, W. S. Wijesoma, and J. F. Dong, "Improving Path Planning and Mapping Based on Stereo Vision and Lidar", Proceedings of International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008, pp. 384-389.
- W. Ding, Optimal Integration of GPS with Inertial Sensors: Modelling and Implementation, Ph.D. thesis, University of New South Wales, Sydney, 2008.
- Ribeiro, M., "Kalman and extended Kalman filters: concept, derivation and properties", Technical Report, Institute for Systems and Robotics-Instituto Superior Tecnico, Lisbon, 2004.
Cited by
- LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter vol.17, pp.3, 2017, https://doi.org/10.3390/s17030539