DOI QR코드

DOI QR Code

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming

CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화

  • Jung, Yoo-Rim (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Choi, Da-Hee (Climate Prediction Division, Korea Meteorological Administration) ;
  • Baek, Hee-Jeong (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Cho, Chunho (Climate Research Laboratory, National Institute of Meteorological Research, KMA)
  • 정유림 (국립기상연구소 기후연구과) ;
  • 최다희 (기상청 기후예측과) ;
  • 백희정 (국립기상연구소 기후연구과) ;
  • 조천호 (국립기상연구소 기후연구과)
  • Received : 2013.05.27
  • Accepted : 2013.09.27
  • Published : 2013.12.31

Abstract

Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Keywords

References

  1. Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Climate, 23, 3474-3496. https://doi.org/10.1175/2010JCLI3228.1
  2. Collins, M., and Coauthors, 2005: El Nino- or La Nina-like climate change?. Clim. Dynam., 24, 89-104, doi: 10.1007/s00382-004-0478-x.
  3. Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., doi:10.1002/jgrd.50316 (Accepted).
  4. Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.
  5. Gastineau, G., H. L. Treut, and L. Li, 2008: Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus, 60A, 863-884.
  6. Gastineau, G., L. Li, and H. L. Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 3993-4013. https://doi.org/10.1175/2009JCLI2794.1
  7. Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.
  8. Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 663-745.
  9. Houghton, J. T., and Coauthors, 2001: Climate Change 2001, The Scientific Basis. Cambridge University Press, London, 881 pp.
  10. Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563-568. https://doi.org/10.1175/2010JCLI4077.1
  11. Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: winter versus summer. J. Climate, 25, 8387-8393. https://doi.org/10.1175/JCLI-D-12-00323.1
  12. Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Clim. Dynam., 17, 83-106. https://doi.org/10.1007/PL00013736
  13. Lim, E.-P., and I. Simmonds, 2009: Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim. Dynam., 33, 19-32, doi:10.1007/s00382-008-0444-0.
  14. Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.
  15. Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.
  16. Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Nino versus global warming. J. Climate, 21, 5835-5851. https://doi.org/10.1175/2008JCLI2200.1
  17. Meehl, G. A., and Coauthors, 2007: Global climate projections, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 747-845.
  18. Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 3661-3683. https://doi.org/10.1175/JCLI-D-11-00240.1
  19. Mitas C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalysis. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.
  20. Nguyen, H., B. Timbal, A. Evans, C. Lucas, and I. Smith, 2012: The Hadley circulation in reanalysis: climatology, variability and change. J. Climate, doi:10.1175/JCLI-D-12-00224.1, in press.
  21. Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 2751-2767. https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2
  22. Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J. Climate, 24, 795-812. https://doi.org/10.1175/2010JCLI3772.1
  23. Randall, D. A., and Coauthors, 2007: Climate models and their evaluation, Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 589-662.
  24. Santer, B. D., and Coauthors, 2003: Behavior of tropopause height and atmospheric temperature in models, reanalysis, and observations: decadal changes. J. Geophys. Res., 108, 4002, doi:10.1029/2002JD002258.
  25. Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.
  26. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316-4340. https://doi.org/10.1175/JCLI4258.1
  27. Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84, 225-241.