DOI QR코드

DOI QR Code

Development of Intelligent Services and Analyzing User Behavior Information Using Smartphone

스마트폰을 이용한 사용자의 실생활 정보 분석 및 응용 서비스 개발

  • 오성균 (서일대학교 컴퓨터소프트웨어과)
  • Received : 2013.11.26
  • Accepted : 2013.12.05
  • Published : 2013.12.31

Abstract

The smart phone is a representative personal device that can provide information onan individual's behavior related to real-life places, where the mobile phone users frequently stay and go, and the people who call or meet with the user. This paper proposes moving modeling that is based on the individual life logs using mobile phone data for identifying individuals. This method can be used to recommend the most suitable phone-service.

스마트 폰 사용자가 증가하게 됨에 따라 스마트 폰은 가장 대표적인 개인화 기기로써 실제 생활에서의 개인의 행동에 대한 정보를 반영할 수 있다. 이러한 행동 정보로는 사용자가 자주 방문하거나 머무는 장소, 사용자가 자주 연락하는 사람, 사용자가 자주 만나는 사람에 대한 정보 등 그 밖에 여러 가지 실제 생활 정보가 반영될 수 있다. 본 연구에서는 사용자 개인의 실생활을 반영한 행동 패턴에 기반을 두고 개인 모델링 방법을 제안한다. 이 방법은 스마트폰 서비스 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.

Keywords

References

  1. Dipanjan Chakraborty, Anupam Joshi, Tim Finin and Yelena Yesha, "Service Composition for Mobile Environments," Mobile Networks and Applications, pp.435-451, 2005. DOI: http://dx.doi.org/10.1007/s11036-005-1556-y
  2. Samsung Economic Research Institute(SERI), "The smart phones open up the future," http://www.seri.org/db/dbReptV.html?s_menu=0202&pu bkey=db20100203001 (accessed Oct., 10, 2013)
  3. O'Reilly Tim, "What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software," http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839 (accessed Oct., 11, 2013)
  4. Jungsook Bae, Seungwan Ryu, JaeYong Lee, ByungChul Kim, "Implementation of Next Generation Mobile Service: The Context-Aware Follow-Me Service," 6th International Conference, pp.1033-1040, 2006.
  5. Samsung Advanced Institute of Technology (SAIT), "Computer & Intelligence - User Interface," http://www.sait.samsung.co.kr (accessed Sep., 19, 2013)
  6. Moon-Hee Park, Han-Saem Park, and Sung-Bae Cho, "Restaurant Recommendation for Group of People in Mobile Environments Using Probabilistic Multi-criteria Decision Making," APCHI 2008(LNCS 5068), pp.114-122, 2008.
  7. Electronics and Telecommunications Research Institute(ETRI), "Personal Life Log-based intelligent service technology", Ministry of Knowledge Economy, 2009.
  8. MIT Media Lab, "Reality Mining," http://reality.media.mit.edu (accessed Feb., 2, 2013)
  9. T. Scott Saponas, Jonathan Lester, Jon E. Froehlich, James Fogarty and James A. Landay, "iLearn on the iPhone: Real-Time Human Activity Classification on Commodity Mobile Phones", UW-CSE-08-04-02 Tech Report, 2008.
  10. Docomo "Euro-Labs," http://www.docomoeuro labs.de (accessed Jan., 9, 2013)
  11. Carnegie Mellon Univ, "SenSay," http://www.cs.cmu.edu/-aura/docdir/sensay_iswc.pdf (accessed Oct., 22, 2013)
  12. Hassan A. Karimi, Benjamin Zimmerman, Alper Ozcelik, Duangduen Roongpiboonsopit, "SoNavNet: A Framework for Social Navigation Networks", Proceedings of the 2009 International Workshop on Location Based Social Networks, 2009. DOI: http://dx.doi.org/10.1145/1629890.1629908
  13. Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Ronald Peterson, Hong Lu, Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, Andrew T. Campbell, "Sensing Meets Mobile Social networks: The Design, Implementation and Evaluation of the CenceMe Application", Proceedings of the 6th ACM Conference on Embedded network Sensoy Systems, 2008. DOI: http://dx.doi.org/10.1145/1460412.1460445

Cited by

  1. The experiences of middle-aged woman using SNS through Smartphone vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8616