DOI QR코드

DOI QR Code

경주시 양북면 단층암의 원소거동과 광물조성 특성

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea

  • 송수정 (경북대학교 지질학과) ;
  • 추창오 (경북대학교 지질학과) ;
  • 장천중 (한국수력원자력(주) 중앙연구원 부지구조그룹) ;
  • 장윤득 (경북대학교 지질학과)
  • Song, Su Jeong (Department of Geology, Kyungpook National University) ;
  • Choo, Chang Oh (Department of Geology, Kyungpook National University) ;
  • Chang, Chun-Joong (Site & Structural Research Group, Central Research Institute, Korea Hydro & Nuclear Power Co., LTD.) ;
  • Jang, Yun Deuk (Department of Geology, Kyungpook National University)
  • 투고 : 2013.03.12
  • 심사 : 2013.06.11
  • 발행 : 2013.06.30

초록

단층활동 과정에서 암석 내 화학조성과 광물 조성 간의 연관성을 이해하기 위한 목적으로 경주시 양북면 용당리에 발달하는 단층암에 대하여 XRF, ICP, XRD, EPMA/BSE 분석을 시행하여 단층암 내의 광물 조성 및 원소의 거동 경향성을 파악하였다. 단층암의 대표적인 주성분으로서 $SiO_2$는 61.6~71.0%의 범위로 가장 높은 함량을 나타내며, $Al_2O_3$는 10.8~15.8%이다. $Na_2O$는 0.22~4.63%, $K_2O$는 2.02~4.89%이고, $Fe_2O_3$는 3.80~12.5% 범위로 나타나 단층암 내에서 특히 이들 원소의 편차가 크다. 각력대에서 비지대로 갈수록 감소하는 경향을 나타내는 원소에는 $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba, Sr 등이 있고, 증가하는 경향을 나타내는 원소에는 $Fe_2O_3$, MgO, MnO, Zr, Hf, Rb 등이 있다. 이러한 화학적 거동은 각력대가 대부분 석영, 장석류와 같은 주요 조암광물로 구성되는 반면, 비지대는 일라이트와 같은 점토광물이 다량 함유되는 것과 밀접한 관련성이 있다. 본 단층대에서는 기존 광물의 변질과 동시에 점토광물이 생성되는 데 있어 단층 활동에 수반된 유체활동이 큰 영향을 끼쳤다. 단층활동 초기에는 파쇄대가 열수의 통로로 작용하는 과정에서, 주원소 및 미량원소, 희토류원소는 기존 광물로부터 용탈되어 높은 원소 유동성을 나타내었으나, 파쇄대 중심부가 비지대로 점차 변화하는 과정에서는 이차적으로 형성된 점토광물로 인해 단층대의 투수성이 감소하고, 점토광물이 풍부해진 비지대 내에 농집되므로 낮은 원소 유동성을 가진 것으로 해석된다.

This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.

키워드

참고문헌

  1. Bao, S.X., Zhou, H.Y., Peng, X.T., Ji, F.W. and Yao, H.Q., 2008, Geochemistry of REE and yttrium in hydrothermal fluids from the Endeavour segment, Juan de Fuca Ridge. Geochemical Journal, 42, 359-370. https://doi.org/10.2343/geochemj.42.359
  2. Bierlein, F.P., Waldron, H.M. and Arne, D.C., 1999, Behaviour of rare earth and high field strength elements during hydrothermal alteration of meta-turbidites associated with mesothermal gold mineralization in central Victoria, Australia. Journal of Geochemical Exploration, 67, 109-125. https://doi.org/10.1016/S0375-6742(99)00050-3
  3. Bingqui, Z. and Hui, Y., 1995, The use of geochemical indicator elements in the exploration for hot water sources within geothermal fields. Journal of Geochemical Exploration, 55, 125-136. https://doi.org/10.1016/0375-6742(95)00024-0
  4. Chang, T.W. and Chae, Y.J., 2004, Faulting and Hydrothermal Activity in the Gouge Zones of Quaternary Faults at the Eastern Block of the Ulsan Fault. Journal of the Geological Society of Korea, 40, 469-479.
  5. Chang, T.W. and Choo, C.O., 1999, Faulting Process and K-Ar Ages of Fault Gouges in the Yangsan Fault Zone. Journal of the Korean Earth Science Society, 20, 25-37.
  6. Chang, T.W., Chae, Y.J. and Choo, C.O., 2005a, Formation of Alteration Minerals in Gouges of Quaternary Faults at the Eastern Blocks of the Ulsan Fault, Southeastern Korea. Journal of the Mineralogical Society of Korea, 18, 205-214.
  7. Chang, T.W., Chae, Y.J. and Choo, C.O., 2005b, Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea. The Journal of Engineering Geology, 15, 349-363.
  8. Choo, C.O., Jang, Y.D. and Chang, C.J., 2012, Mineralogical Characteristics of Hydrothermal Laumontite and Adularia in the Breccia Zone of a Fault Yangbuk-myeon, Gyeongju and Implications for Fault Activity. Journal of the Mineralogical Society of Korea, 25, 23-36. https://doi.org/10.9727/jmsk.2012.25.1.023
  9. Coppin, F., Berger, G., Bauer, A., Castet, S. and Loubet, M., 2002, Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182, 57-68. https://doi.org/10.1016/S0009-2541(01)00283-2
  10. Ennis, D.J., Dunber, N.W., Campbell, A.R. and Chapin. C.E., 2000, The effects of K-metasomatism on the mineralogy and geochemistry of silicic ignimbrites near Socorro, New Mexic. Chemical Geology, 167, 285-312. https://doi.org/10.1016/S0009-2541(99)00223-5
  11. Goddard, J.V. and Evans, J.P., 1995, Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. Journal of Structural Geology, 17, 533-547. https://doi.org/10.1016/0191-8141(94)00068-B
  12. Gong, Q., Deng, J., Yang, L., Zhang, J., Wang, Q. and Zhang, G., 2011, Behavior of major and trace elements during weathering of sericite-quartz schist. Journal of Asian Earth Sciences, 42, 1-13. https://doi.org/10.1016/j.jseaes.2011.03.003
  13. Hong, Y.K., 1985, Geochemistry of the Cretaceous Eonyang and Yoocheon granites in the Southeastern Korea. The Journal of the Geological Society of Korea, 21, 90- 108.
  14. Iida, Y., Ohnuki, T., Isobe, H., Yanase, N., Sekine, K., Yoshida, H. and Yusa, Y., 1998, Hydrothermal redistribution of rare earth elements in Toki granitic rock, central Japan. Journal of Contaminant Hydrology, 35, 191-199. https://doi.org/10.1016/S0169-7722(98)00130-2
  15. Janssen, C., Laube, N., Bau, M. and Gray, D.R., 1998, Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures. Tectonophysics, 294, 109-130. https://doi.org/10.1016/S0040-1951(98)00127-9
  16. Kim, E.J., Hong, Y.K. and Chi, S.J., 2011, Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration. Economic and Environmental Geology, 44, 95-107. https://doi.org/10.9719/EEG.2011.44.2.095
  17. Koichiro, F., Tomoyuki, O., Norio, S., Yukari, M., Tomoaki, T., Hidemi, T., Kentaro, O. and Yoji, K., 2002, Waterrock interaction observed in the brittle-plastic transition zone. Earth Planets Space, 54, 1127-1132. https://doi.org/10.1186/BF03353313
  18. Koo, K.L., 2003, Petrology and Geochemistry of the Eonyang Granites. M.S. dissertation, Seoul National University, 113p.
  19. Lim, H.S., 2004, Geochemistry of the granitic rocks in Sannae-Eonyang area. M.S. dissertation, Korea National University of Education, 32p.
  20. Lixing, L., Houmin, L., Denghong, W. and Changqing, Z., 2009, Trace Elements and Rare Earth Elements Geochemistry and Its Metallogenic Significance for Cu-Zn Ore Deposits in Tongbai Area, Henan Province, China. Earth Science Frontiers, 16, 325-336. https://doi.org/10.1016/S1872-5791(08)60116-5
  21. Marbach, T., Kober, B., Mangini, A., Warr, L. and Schleicher, A., 2005, Mobility of U-.Th radionuclides connected with fault porosity: A case study of the Schauenburg Fault, Rhine Graben Shoulder, Germany. Physics and Chemistry of the Earth, 30, 1030-1037. https://doi.org/10.1016/j.pce.2005.02.001
  22. Metz, S. and Trefry, J.H., 2000, Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochimica et Cosmochimica Acta, 64, 2267-2279. https://doi.org/10.1016/S0016-7037(00)00354-9
  23. Pandarinath, K., Dulski, P., Torres-Alvarado, I.S. and Verma, S.P., 2008, Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 53-72. https://doi.org/10.1016/j.geothermics.2007.10.002
  24. Parsapoor, A., Khalili, M. and Mackizadeh, M.A., 2009, The behaviour of trace and rare earth elements(REE) during hydrothermal alteration in the Rangan area (Center Iran). Journal of Asian Earth Sciences, 34, 123-134. https://doi.org/10.1016/j.jseaes.2008.04.005
  25. Schulz, S.E. and Evans, J.P., 1998, Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, 295, 223-244. https://doi.org/10.1016/S0040-1951(98)00122-X
  26. Shon, S.W., Chang, T.W. and Kim, Y.K., 2002, Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula. Journal of the Mineralogical Society of Korea, 15, 85-94.
  27. Sibson, R.H., 1987, Earthquake rupturing as a mineralizing agent in hydrothermal system. Geology, 15, 701-704. https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
  28. Sibson, R.H., Moore, J.M. and Rankin, A.H., 1975, Seismic pumping a hydrothermal fluid transport mechanism. Journal of The Geological Society, 131, 653-659. https://doi.org/10.1144/gsjgs.131.6.0653
  29. Song, S.J., Choo, C.O., Chang, C.J., Chang, T.W. and Jang, Y.D., 2012, Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Economic and Environmental Geology, 45(5), 487-502. https://doi.org/10.9719/EEG.2012.45.5.487
  30. Tang, H.F. and Liu, C.Q., 2002, Trace element geochemistry during metamorphic dehydration: A case study from the Xingzi Group of Lushan, southeast China. Geochemical Journal, 36, 545-561. https://doi.org/10.2343/geochemj.36.545
  31. Terakado, Y. and Fujitani, T., 1998, Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan. Geochimica et Cosmochimica Acta, 62, 1903-1917. https://doi.org/10.1016/S0016-7037(98)00109-4
  32. Torres-Alvarado, I.S., Pandarinath, K.S., Verma, P. and Dulski, P., 2007, Mineralogical and geochemical effects due to hydrothermal alteration in the Los Azufres geothermal field, Mexico. Revista Mexicana de Ciencias Geologicas, 24, 15-24.
  33. Uysal, I.T. and Golding, S.D., 2003, Rare earth element fractionation in authigenic illite-smectite from Late Permian clastic rocks, Bowen Basin, Australia : implications for physico-chemical environments of fluids during illitization. Chemical Geology, 193, 167-179. https://doi.org/10.1016/S0009-2541(02)00324-8
  34. Vrolijk, P. and Pluijm, B.A., 1999, Clay gouge. Journal of Structural Geology, 21, 1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
  35. Wibberley, C., 1999, Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones? Journal of Structural Geology, 21, 1219-1227. https://doi.org/10.1016/S0191-8141(99)00019-X

피인용 문헌

  1. A microstructural study of the fault gouge in the granite, Yangbuk, Gyeongju, southeastern Korea, with implications for multiple faulting vol.21, pp.1, 2017, https://doi.org/10.1007/s12303-016-0021-1