DOI QR코드

DOI QR Code

The Effect of Glass Fiber Reinforcing Materials and Thermocycling on the Transverse Strength of Denture Base Resin

유리 섬유 의치상 레진 강화재와 열 순환이 의치상 굽힘 강도에 미치는 영향

  • Jin, Sung-Eun (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 진성은 (단국대학교 치과대학 치과보철학교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학교실)
  • Received : 2013.08.04
  • Accepted : 2013.10.20
  • Published : 2013.12.31

Abstract

This study aimed to investigate the reinforcing effect of two kinds of glass fiber, Quarts Splint$^{TM}$ Mesh and SES MESH$^{(R)}$ and to evaluate the effect of the thermocycling on the transverse strength of the denture base and on the reinforcing effect of the reinforcements. 20 specimens of the size of $2.5{\times}10.0{\times}65.0mm$ were fabricated for each group; control group, metal mesh reinforcement group, Quarts Splint$^{TM}$ Mesh reinforcement group and SES MESH$^{(R)}$ reinforcement group. To find the difference made by the thermocycling, 10 specimens of each reinforcement group were treated by thermocycling. 3-point bending test was performed to measure the transverse strength of the denture base resin. The specimens reinforced with SES MESH$^{(R)}$ and Quarts Splint$^{TM}$ Mesh showed significantly higher transverse strength than the control group (P<.05), and significantly lower transverse strength than the specimens reinforced with the metal mesh (P<.05). Thermocycled specimens were lower in transverse strength than non-thermocycled specimens in the control group, metal mesh group, Quarts Splint$^{TM}$ Mesh group and SES MESH$^{(R)}$ group, however significant difference (P<.05) was found only in the control group.

본 연구에서는 두 종류의 유리 섬유 의치상 강화재인 Quarts Splint$^{TM}$Mesh와 SES MESH$^{(R)}$의 의치상 보강 효과와 열 순환이 의치상의 굽힘 강도와 강화재의 강화 효과에 미치는 영향을 알아보고자 하였다. 시편은 $2.5{\times}10.0{\times}65.0mm$ 크기로 강화재를 사용하지 않은 대조군, 금속 격자 강화재, Splint$^{TM}$Mesh, SES MESH$^{(R)}$로 보강한 시편을 각각 20개씩 제작하였으며 그 중 10개에는 열 순환을 시행하였다. 3점 굽힘 실험을 시행하여 의치상의 굽힘 강도를 측정하였다. Quarts Splint$^{TM}$Mesh와 SES MESH$^{(R)}$로 강화한 군은 대조군보다 유의하게 높은 굽힘 강도를 나타내었으며(P<.05), 금속 격자 강화재로 보강한 군보다 유의하게 낮은 굽힘 강도를 나타내었다(P<.05). 모든 군에서 열 순환을 시행한 경우가 열 순환을 시행하지 않은 경우에 비해 낮은 굽힘 강도를 나타내었지만 대조군에서만 유의한 차이를 나타내었다(P<.05).

Keywords

References

  1. Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures. J Oral Rehabil 1999;26:185-94. https://doi.org/10.1046/j.1365-2842.1999.00375.x
  2. Wiskott HW, Jack I, Nicholls, Belser UC. Stress Fatigue: Basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16.
  3. Seo RS, Murata H, Hong G, Vergani CE. Influence of thermal and mechanical stresses on the strength of intact and relined denture bases. J Prosthet Dent 2006;96:59-67. https://doi.org/10.1016/j.prosdent.2006.05.007
  4. Barclay CW, Spence D, Laird WRE. Intra-oral temperatures during function. J Oral Rehabil 2005;32:886-94. https://doi.org/10.1111/j.1365-2842.2005.01509.x
  5. Archadian N, Kawano F, Ohguri T, Ichikawa T, Matsumoto N. Flexural strength of rebased denture polymers. J Oral Rehabil 2000;27:690-6. https://doi.org/10.1046/j.1365-2842.2000.00552.x
  6. Gohring TN, Gallo L, Luthy H. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite. Dent Mater 2005;21:761-2. https://doi.org/10.1016/j.dental.2005.01.013
  7. Harrison A, Huggett R, Jagger RC. The effect of a cross-linking agent on the abrasion resistance and impact strength of an acrylic resin denture base material. J Dent 1978;6:299-304. https://doi.org/10.1016/0300-5712(78)90165-3
  8. Rodford RA. Further development and evaluation of high impact strength denture base materials. J Dent 1990;18:151-7. https://doi.org/10.1016/0300-5712(90)90056-K
  9. Marei MK. Reinforcement of denture base resin with glass fillers. J Prosthodont 1999;8:18-26. https://doi.org/10.1111/j.1532-849X.1999.tb00004.x
  10. Yu SH, Ahn DH, Park JS, Chung YS, Han IS, Lim JS, Oh S, Oda Y, Bae JM. Comparison of denture base resin reinforced with polyaromatic polyamide fibers of different orientations. Dent Mater J 2013;32:332-40. https://doi.org/10.4012/dmj.2012-235
  11. Craig RG, Farah JW, el-Tahawi HM. Threedimensional photoelastic stress analysis of maxillary complete dentures. J Prosthet Dent 1974;31:122-9. https://doi.org/10.1016/0022-3913(74)90046-8
  12. Segerstro¨m S, Ruyter IE. Effect of thermal cycling on flexural properties of carbon-graphite fiberreinforced polymers. Dent Mater 2009;25:845-51. https://doi.org/10.1016/j.dental.2008.12.007
  13. Foo SH, Lindquist TJ, Aquilino SA, Schneider RL, Williamson DL, Boyer DB. Effect of polyaramid fiber reinforcement on the strength of 3 denture base polymethyl methacrylate resins J Prosthodont 2001;10:148-53. https://doi.org/10.1111/j.1532-849X.2001.00148.x
  14. Uzun G, Hersek N, Tinçer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81:616-20. https://doi.org/10.1016/S0022-3913(99)70218-0
  15. Kanie T, Fujii K, Arikawa H, Inoue K. Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dent Mater 2000;16:150-8 . https://doi.org/10.1016/S0109-5641(99)00097-4
  16. Vallittu PK. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. J Prosthet Dent 1999;81:318-26. https://doi.org/10.1016/S0022-3913(99)70276-3
  17. Lee DS, Lim HS, Lim JH, Cho IH. A study on the effect of thermocycling to the physical properties of denture liners. J Korean Acad Prosthdont 2001;39:556-75.
  18. Park SH, Lim HS, Cho IH. On the fracture strength of the repaired resin according to the type of denture base resin, the type of reinforcing material and thermocycling. J Den Rehabilitation and Applied Science 1999;15:27-37.
  19. Council on dental materials and devices: Revised American Dental Association specification no.12 for denture base polymers. J Am Dent Assoc 1975;90:451-8. https://doi.org/10.14219/jada.archive.1975.0069
  20. International Standards Organization. ISO 1567 specifications for denture base polymers. Geneva, Switzerland: ISO;1998.
  21. Lee JS, Lim JH, Cho IH. A study on the tensile strength between metal denture base and relining materials. J Korean Acad Prosthdont 2000;38:1-11.
  22. Beyli MS, von Fraunhofer JA. An analysis of causes of fracture of acrylic resin denture. J Prosthet Dent 1981;46:113-20. https://doi.org/10.1016/0022-3913(81)90151-7
  23. Kawano F, Miyamoto M, Tada N, Matsumoto N. Reinforcing effect of a Ni-Cr alloy plate on an acrylic resin denture base. Int J Prosthodont 1991; 43:27-31.
  24. Yu SH, Lee Y, Oh S, Cho HW, Oda Y, Bae JM. Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination. Dent Mater 2012;31:1039-46. https://doi.org/10.4012/dmj.2012-020
  25. Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of "high strength" denture base acrylic resins. J Oral Rehabil 2002;29:263-7. https://doi.org/10.1046/j.1365-2842.2002.00830.x
  26. John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. J Prosthet Dent 2001;86:424-7. https://doi.org/10.1067/mpr.2001.118564
  27. Doğan OM, Bolayir G, Keskin S, Doğan A, Bek B. The evaluation of some flexural properties of a denture base resin reinforced with various aesthetic fibers. J Mater Sci Mater Med 2008;19:2343-9. https://doi.org/10.1007/s10856-007-3343-8
  28. Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 1998;11:340-50.
  29. Vallittu PK. Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material. J Oral Rehabil 1993;20:533-9. https://doi.org/10.1111/j.1365-2842.1993.tb01640.x
  30. Arikan A, Ozkan YK, Arda T, Akalin B. Effect of 180 days of water storage on the transverse strength of acetal resin denture base material. J Prosthodont 2010;19:47-51. https://doi.org/10.1111/j.1532-849X.2009.00495.x
  31. Dixon D, Ekstrand KG, Breeding LC. The transverse strengths of three denture base resins. J Prosthet Dent 1991;66:510-3. https://doi.org/10.1016/0022-3913(91)90514-W
  32. Machado AL, Puckett AD, Breeding LC, Wady AF, Vergani CE. Effect of thermocycling on the flexural and impact strength of urethane-based and highimpact denture base resins. Gerodontology 2012;29:318-23. https://doi.org/10.1111/j.1741-2358.2011.00474.x

Cited by

  1. 열 순환 처리가 Gingival shade 복합레진의 기계적 특성에 미치는 영향 vol.39, pp.2, 2017, https://doi.org/10.14347/kadt.2017.39.2.83
  2. 망사 및 스틱 형태의 유리섬유 보강재를 삽입한 의치상용 레진의 굴곡강도 및 굴곡계수 비교 평가 vol.42, pp.2, 2013, https://doi.org/10.14347/kadt.2020.42.2.91