DOI QR코드

DOI QR Code

Availability Review of Tailings from the Sangdong Tungsten Mine as a Material for Construction

건설용 재료로서 상동광산광미의 활용성 검토

  • Kim, Yong-Jic (Infrastructure Research Team, Daewoo Institute of Construction Technology) ;
  • Kim, Young-Jin (Daewoo Institute of Construction Technology) ;
  • Choi, Yun-Wang (Department of Civil Engineering, Semyung University) ;
  • Kim, Sang-Chel (Department of Civil Engineering, Hanseo University)
  • 김용직 ((주)대우건설 기술연구원 인프라연구팀) ;
  • 김영진 ((주)대우건설 기술연구원) ;
  • 최연왕 (세명대학교 토목공학과) ;
  • 김상철 (한서대학교 토목공학과)
  • Received : 2013.11.30
  • Accepted : 2013.12.18
  • Published : 2013.12.30

Abstract

This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine (TA) as admixture for concrete. TA has been accumulating for several decades in Sangdong, a region in Korea, and there is a growing demand for alternative uses for this hazardous substance. In particular, the use must be in accordance with the hazardous materials stipulations under the Korean waste control act. This study showed that TA presented pH of 8.0-9.3, 18.7-22.0% of water content, 2.7% of maximum ignition loss. The chemical composition of TA showed minute differences from each depth of sampling that represented approximately 50% of $SiO_2$ and 13% of both $Al_2O_3$ and $Fe_2O_3$. The chemical composition of Cd, Cu, Zn and Pb from mortar incorporating TA showed lower levels of hazardous materials which met the specifications of the waste control act in Korea. The TA mortar also appeared very effective for stabilizing/solidifying heavy metals particularly when used in conjunction with SG.

상동지역 중석광 광미의 품질 특성을 파악하기 위해 XRD 및 PSA를 사용하여 광물학적인 특성을 검토하였다. XRD분석 결과 상동지역 중석광 광미내에는 석영(quartz), 녹니석(chlorite), 회장석(anorthite) 그리고 코디에라이트(cordierite) 등이 함유되어 있는 것으로 파악되었다. 또한, 상동지역 중석광 광미의 용출 특성을 파악하기 위해 광미를 혼합한 모르터를 제작하여 KSLT의 규정에 의해 실험한 결과 폐기물 관리법 시행규칙에 제시된 유해물질 함유 기준값 보다 낮은 결과를 나타내었으며, 특히, 고루슬래그 미분말의 혼합률이 증가할수록 중금속의 농도는 감소함을 알 수 있다.

Keywords

References

  1. Wilson B., Pyatt F.B. (2006). Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Science of Total Environ, 370, 401-408. https://doi.org/10.1016/j.scitotenv.2006.07.026
  2. Carlson L, Bigham J.M., Schwertmann U., Kyek A. (2002). Scavenging of as from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues, Environmental Science and Technology, 36(8), 1712-1719. https://doi.org/10.1021/es0110271
  3. Fernando P.T., Joao C.G., Said J. (2007). Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cement and Concrete Research, 37, 933-941. https://doi.org/10.1016/j.cemconres.2007.02.006
  4. Watson J.H.P., Beharrell P.A. (2006). Extracting values from mine dumps and tailings, Minerals engineering, 19, 1580-1587. https://doi.org/10.1016/j.mineng.2006.08.014
  5. Benzaazoua M., Belem T., Bussiere B. (2002). Chemical factors that influence the performance of mine sulphidic paste backfill, Cement and Concrete Research, 32, 1133-1144. https://doi.org/10.1016/S0008-8846(02)00752-4
  6. Bhatty J., Marijnissen J., Reid K.J. (1985). Portland cement production using mineral wastes, Cement and Concrete Research, 15(3), 501-510. https://doi.org/10.1016/0008-8846(85)90124-3