DOI QR코드

DOI QR Code

Implementation of Stereoscopic 3D Video Player System Having Less Visual Fatigue and Its Computational Complexity Analysis for Real-Time Processing

시청피로 저감형 S3D 영상 재생 시스템 구현 및 실시간 처리를 위한 알고리즘 연산량 분석

  • Lee, Jaesung (Department of Electronic Engineering, Korea National University of Transportation)
  • Received : 2013.08.07
  • Accepted : 2013.09.16
  • Published : 2013.12.31

Abstract

Recently, most of movies top-ranked in the box office are screening in Stereoscopic 3D, and the world's leading electronics companies such as Samsung and LG are getting the hots for 3DTV sales. However, each person has different binocular disparity and different viewing distance, and thus he or she feels the severe visual fatigue and headaches if he or she is watching 3D content with the same binocular disparity, which is very different from things he or she feels in the real world. To solve this problem, this paper proposes and implement a 3D rendering system that correct the disparity of 3D content by reflecting binocular distance and viewing distance. Then, the computational complexity is analyzed. Optical-flow and Warping algorithms turn out to consume 732 seconds and 5.7 seconds per frame, respectively. Therefore, a dedicated chip-set for both blocks is strongly required for real-time HD 3D display.

최근 박스 오피스 상위권 작품들의 상당수가 Stereoscopic 3D 상영을 병행하고 있으며 삼성, LG 등 세계 유수 가전업체들이 3DTV 판촉에 열을 올리고 있다. 그러나 사람마다 양쪽 눈동자 간격이 다르고 시청 거리와 위치도 개인마다 다르다는 점을 무시한 채 동일한 양안 시차로 제작된 3D 컨텐츠를 시청하게 될 경우 실세계에서 느끼는 입체감과 커다란 괴리가 발생하게 되어 극심한 시각 피로와 두통을 유발하게 된다. 이를 해결하기 위해 본 논문에서는 양안 시차와 시청 거리를 반영하여 입체 컨텐츠를 실시간으로 보정, 재생하는 S3D 렌더링 시스템을 제안 및 구현하고 그 연산 복잡도를 분석한다. 분석 결과 Optical Flow 알고리즘 블록은 한 프레임당 수행 시간이 최대 732초에 이르러 반드시 하드웨어 가속기 형태로 전용칩화할 필요가 있음을 확인하였고 Warping 알고리즘 처리 블록도 프레임당 최대 5.7초의 시간이 필요해 HD급 또는 1080p Full HD 화면 재생을 위해서는 함께 전용칩화 할 필요가 있음을 확인하였다.

Keywords

References

  1. Tekalp, A. M., Smolic, A., Vetro, A., and Onural, L., Eds. "Special issue on 3-D Media and Displays," vol. 99, 4. Proceedings of the IEEE. 2011.
  2. Land, M., Hornug, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. H. "Nonlinear disparity mapping for stereoscopic 3D," ACM Trans. Graph. 29, 4. 2010.
  3. Oskam, T., Hornug, A., and Bowles, H., Mitchell, K., and Gross, M., "OSCAM-Optimized Stereoscopic Camera Control for Interactive 3D," ACM Trans. Graph. 29, 4. 2010.
  4. Gateau, S., and Neuman, R. 2010. "Stereoscopy from xy to z," In SIGGRAPH ASIA Courses.
  5. Koppal, S. J., Zitnick, C. L., Cohen, M. F., Kang, S. B., Ressler, B., and Colbrun, A. "A viewer-centric editor for 3D movies," IEEE Computer Graphics and Applications 31, 1. 2011.
  6. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. "A perceptual model for disparity," ACM Trans. Graph. 30, 4. 2011.
  7. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., and Gross, M. H. "Computational stereo camera system with programmable control loop," ACM Trans. Graph. 30, 4. 2011.
  8. Seok-Hyon Kang and Hyung-Ki Hong, "In Watching 3D Stereoscopic Display Using the Binocular Disparity, the Effect of Pupillary Distance of Adults and Children on the Perception of 3D Image," Journal of Korean Ophthalmic Optics Society, vol. 16, no. 3, pp.299-305, 2011.
  9. Jae-Ho Lee and Chang-Ick Kim, "Stereoscopic Image Generation with Optimal Disparity using Depth Map Preprocessing and Depth Information Analysis," Journal of broadcast engineering, vol. 14, no. 2, pp.164-177, 2009. https://doi.org/10.5909/JBE.2009.14.2.164
  10. Dong-Wook Kim, Kwang-Hoon Lee, Sung-Kyu Kim, and Eun-Young Chang, "Simulation of Distortion in Image Space due to Observer's Rotation Movement in Stereoscopic Display, and Its Correction," Korean Journal of Optics & Photonics, vol. 20, no. 2, pp.65-144, 2009. https://doi.org/10.3807/HKH.2009.20.2.065
  11. Cheon Lee and Yo-Sung, "Boundary Noise Removal in Synthesized Intermediate Viewpoint Images for 3D Video," Journal of Broadcast Engineering, vol. 9, no. 4, pp.109-112, 2008.
  12. Jong-Min Lee, Dae-Hyun Kim, Jong-Soo Choi, "A Study on Stereo Matching Algorithm using Disparity Space Image," Journal of the institute of electronics engineers of Korea, vol. 41, no. 6, pp.9-18, 2004.
  13. Atherton, T.J., D.J. Kerbyson. "Size invariant circle detection." Image and Vision Computing. Volume 17, Number 11, 1999, pp. 795-803. https://doi.org/10.1016/S0262-8856(98)00160-7
  14. Davies, E.R., Machine Vision: Theory, Algorithms, Practicalities. 3rd Edition. San Francisco, CA: Morgan Kauffman Publishers, 2005, Chapter 10.
  15. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the Computer Vision and Pattern Recognition, 2001.
  16. B.Froba, A. Ernst, "Face Detection with the Modified Census Transform", Automatic Face and Gesture Recognition, 2004.
  17. Baker, S., and Matthews, I. "Lucas-Kanade 20 years on: A unifying framework", IJCV vol.56, no.3, pp.221-255, 2004. https://doi.org/10.1023/B:VISI.0000011205.11775.fd