DOI QR코드

DOI QR Code

Sensitivity analysis of satellite-retrieved SST using IR data from COMS/MI

  • Park, Eun-Bin (Department of Spatial Information Engineering, Pukyong National University) ;
  • Han, Kyung-Soo (Department of Spatial Information Engineering, Pukyong National University) ;
  • Ryu, Jae-Hyun (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Chang-Suk (Department of Spatial Information Engineering, Pukyong National University)
  • Received : 2013.10.17
  • Accepted : 2013.11.07
  • Published : 2013.12.31

Abstract

Sea Surface Temperature (SST) is the temperature close to the ocean's surface and affects the Earth's atmosphere as an important parameter for the climate circulation and change. The SST from satellite still has biases from the error in specifying retrieval coefficients from either forward modeling or instrumental biases. So in this paper, we performed sensitivity analysis using input parameter of the SST to notice that the SST is most affected among the input parameter. We used Infrared (IR) data from the Communication, Ocean, and Meteorological Satellite (COMS)/Meteorological Imager (MI) from April 2011 to March 2012. We also used the Global Space-based Inter-Calibration System (GSICS) correction to quality of the IR data from COMS. SST was calculated by substituting the input parameters; IR data with or without the GSICS correction. The results of this sensitivity analysis, the SST was sensitive from -0.0403 to 0.2743 K when the IR data were changed by the GSICS corrections.

Keywords

References

  1. Emery, W. J., S. Castro, G. A. Wick, P. Schluessel, and C. Donlon, 2001a. Estimating sea surface temperature from infrared satellite and in situ temperature data, BULLETIN-AMERICAN METEOROLOGICAL SOCIETY, 82(12): 2773-2786. https://doi.org/10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
  2. Emery, W. J., D. J. Baldwin, P. Schlussel, and R. W. Reynolds, 2001b. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements, Journal of Geophysical Research: Oceans, 106(C2): 2387-2405. https://doi.org/10.1029/2000JC000246
  3. Goldberg. M., G. Ohring, J. Butler, C. Cao, R. Datla, D. Doelling, V. Gartner, T. Hewison, B. Iacovazzi, D. Kim, T. Kurino, J. Lafeuille, P. Minnis, D. Renaut, J. Schmetz, D. Tobin, L. Wang, F. Weng, X. Wu, F. Yu, P. Zhang, and T. Zhu, 2011. The global space-based intercalibration system, Bulletin of the American Meteorological Society, Soc., 92 (2011): 467-475. https://doi.org/10.1175/2010BAMS2967.1
  4. Ha, J.-S., J.-H. Kim, and H.-J. Lee, 2006. Sensitivity Analysis of IR Aerosol Detection Algorithm, Korean Journal of Remote Sensing, 22(6): 507-518. https://doi.org/10.7780/kjrs.2006.22.6.507
  5. Lee, C.-S, and K.-S. Han, 2009. An improvement of Simplified Atmospheric Correction: MODIS Visible Channel, Korean Journal of Remote Sensing, 25(6): 487-499. https://doi.org/10.7780/kjrs.2009.25.6.487
  6. Lee, M. A., F. Sakaida, H. Kawamura, C,-H. Cheng, J,-W. Chan, and I. Huang, 2005. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 16(5): 1189-1204. https://doi.org/10.3319/TAO.2005.16.5.1189(O)
  7. McClain, E. P., W. G. Pichel, and C. C. Walton, 1985. Comparative performance of AVHRR-based multichannel sea surface temperatures, Journal of Geophysical Research: Oceans, 90(C6): 11587-11601. https://doi.org/10.1029/JC090iC06p11587
  8. Merchant, C. J., and P. L. Borgne, 2004. Retrieval of sea surface temperature from space, based on modeling of infrared radiative transfer: Capabilities and limitations, Journal of Atmospheric and Oceanic Technology, 21(11): 1734-1746. https://doi.org/10.1175/JTECH1667.1
  9. Merchant, C. J., P. L. Borgne, H. Roquet, and A. Marsouin, 2009. Sea surface temperature from a geostationary satellite by optimal estimation, Remote Sensing of Environment, 113: 445-457. https://doi.org/10.1016/j.rse.2008.10.012
  10. O'Carroll, A. G., T. August, P. L. Borgne, and A. Marsouin, 2012. The accuracy of SST retrievals from Metop-A IASI and AVHRR using the EUMETSAT OSI-SAF matchup dataset, Remote Sensing of Environment, 126: 184-194. https://doi.org/10.1016/j.rse.2012.08.006
  11. Park, K.-A., E.-Y. Lee, S.-R. Chung, and E.-H. Sohn, 2011. Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics, Korean Journal of Remote Sensing, 27(6): 663-675. https://doi.org/10.7780/kjrs.2011.27.6.663
  12. Park, E. B., K-S. Han, J-I. Cho, K-J. Pi, I-H. Kim, C-S. Lee, J-H. Ryu, and J-M. Ha, 2013. An improvement of sea surface temperature estimation by applying GSICS program to COMS, International Symposium on Remote Sensing, Chiba, Japan, May. 15-17, P1-15.
  13. Smith, W. L., R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, 1996. Observations of the infrared radiative properties of the ocean - Implications for the measurement of sea surface temperature via satellite remote sensing, Bulletin of the American Meteorological Society, 77(1): 41-52. https://doi.org/10.1175/1520-0477(1996)077<0041:OOTIRP>2.0.CO;2
  14. Sohn. B. J., B.-R. Kim, and S.-S. Lee, 2010. Possible shift of spectral response function of the MODIS 6.8 water vapor channel causing a cold bias of 2-3K, Atmospheric Measurement Techniques, 3(6): 1667-1672. https://doi.org/10.5194/amt-3-1667-2010