DOI QR코드

DOI QR Code

Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients

  • Yi, Ji Hyun (Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Cho, Yang-Je (Department of Neurology, Yonsei University College of Medicine) ;
  • Kim, Won-Joo (Department of Neurology, Yonsei University College of Medicine) ;
  • Lee, Min Goo (Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Ji Hyun (Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine)
  • Received : 2013.10.17
  • Accepted : 2013.11.12
  • Published : 2013.12.31

Abstract

The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p=0.0057) and the GG genotype (61.0% vs. 39.7%, p=0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p=0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.

Keywords

References

  1. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet 2006;367:1087-1100. https://doi.org/10.1016/S0140-6736(06)68477-8
  2. Depondt C, Shorvon SD. Genetic association studies in epilepsy pharmacogenomics: lessons learnt and potential applications. Pharmacogenomics 2006;7:731-745. https://doi.org/10.2217/14622416.7.5.731
  3. Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology 2005;49:610-617. https://doi.org/10.1016/j.neuropharm.2005.04.028
  4. Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996;2:106-113. https://doi.org/10.1016/1357-4310(96)88720-X
  5. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001;42:1501-1506.
  6. Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188-192. https://doi.org/10.1136/jnnp.71.2.188
  7. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538-549. https://doi.org/10.1056/NEJMra020526
  8. Zhang Y, Han H, Elmquist WF, Miller DW. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 2000; 876:148-153. https://doi.org/10.1016/S0006-8993(00)02628-7
  9. Potschka H, Fedrowitz M, Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001;12:3557-3560. https://doi.org/10.1097/00001756-200111160-00037
  10. Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M, Scheffer GL, et al. Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 2005;46:849-857. https://doi.org/10.1111/j.1528-1167.2005.66604.x
  11. van Vliet EA, Redeker S, Aronica E, Edelbroek PM, Gorter JA. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005;46:1569-1580. https://doi.org/10.1111/j.1528-1167.2005.00250.x
  12. Aronica E, Gorter JA, Ramkema M, Redeker S, Ozbas- Gerceker F, van Vliet EA, et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 2004;45:441-451. https://doi.org/10.1111/j.0013-9580.2004.57703.x
  13. Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005;76:22-76. https://doi.org/10.1016/j.pneurobio.2005.04.006
  14. Potschka H, Fedrowitz M, Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 2003;306:124-131. https://doi.org/10.1124/jpet.103.049858
  15. Cerveny L, Pavek P, Malakova J, Staud F, Fendrich Z. Lack of interactions between breast cancer resistance protein (bcrp/ abcg2) and selected antiepileptic agents. Epilepsia 2006;47: 461-468. https://doi.org/10.1111/j.1528-1167.2006.00453.x
  16. Potschka H, Fedrowitz M, Loscher W. Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR- rats. Epilepsia 2003; 44:1479-1486. https://doi.org/10.1111/j.0013-9580.2003.22603.x
  17. Huai-Yun H, Secrest DT, Mark KS, Carney D, Brandquist C, Elmquist WF, et al. Expression of multidrug resistance- associated protein (MRP) in brain microvessel endothelial cells. Biochem Biophys Res Commun 1998;243:816-820. https://doi.org/10.1006/bbrc.1997.8132
  18. Adkison KD, Artru AA, Powers KM, Shen DD. Contribution of probenecid-sensitive anion transport processes at the brain capillary endothelium and choroid plexus to the efficient efflux of valproic acid from the central nervous system. J Pharmacol Exp Ther 1994;268:797-805.
  19. Wright AW, Dickinson RG. Abolition of valproate-derived choleresis in the MRP2 transporter-deficient rat. J Pharmacol Exp Ther 2004;310:584-588. https://doi.org/10.1124/jpet.103.064220
  20. Niemi M, Arnold KA, Backman JT, Pasanen MK, Godtel- Armbrust U, Wojnowski L, et al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance- associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics 2006;16:801-808. https://doi.org/10.1097/01.fpc.0000230422.50962.91
  21. Hirouchi M, Suzuki H, Itoda M, Ozawa S, Sawada J, Ieiri I, et al. Characterization of the cellular localization, expression level, and function of SNP variants of MRP2/ABCC2. Pharm Res 2004;21:742-748. https://doi.org/10.1023/B:PHAM.0000026422.06207.33
  22. Wada M, Toh S, Taniguchi K, Nakamura T, Uchiumi T, Kohno K, et al. Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet 1998;7:203-207. https://doi.org/10.1093/hmg/7.2.203
  23. Meyerzu Schwabedissen HE, Jedlitschky G, Gratz M, Haenisch S, Linnemann K, Fusch C, et al. Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos 2005;33: 896-904. https://doi.org/10.1124/dmd.104.003335
  24. Choi JH, Ahn BM, Yi J, Lee JH, Nam SW, Chon CY, et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics 2007;17:403-415. https://doi.org/10.1097/01.fpc.0000236337.41799.b3
  25. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003;348:1442-1448. https://doi.org/10.1056/NEJMoa021986
  26. Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 2002;13:2059-2063. https://doi.org/10.1097/00001756-200211150-00014
  27. Löscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 2002;301:7-14. https://doi.org/10.1124/jpet.301.1.7
  28. Hoffmann K, Gastens AM, Volk HA, Loscher W. Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 2006; 69:1-14. https://doi.org/10.1016/j.eplepsyres.2005.12.005
  29. Huang X, Guo B. Adenomatous polyposis coli determines sensitivity to histone deacetylase inhibitor-induced apoptosis in colon cancer cells. Cancer Res 2006;66:9245-9251. https://doi.org/10.1158/0008-5472.CAN-06-0887
  30. Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S, et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 2004;10:1141-1149. https://doi.org/10.1158/1078-0432.CCR-03-0100
  31. Shin HJ, Baek KH, Jeon AH, Kim SJ, Jang KL, Sung YC, et al. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation. Oncogene 2003;22:3853-3858. https://doi.org/10.1038/sj.onc.1206502
  32. Catania VA, Sanchez Pozzi EJ, Luquita MG, Ruiz ML, Villanueva SS, Jones B, et al. Co-regulation of expression of phase II metabolizing enzymes and multidrug resistance- associated protein 2. Ann Hepatol 2004;3:11-17.
  33. Dai G, Chou N, He L, Gyamfi MA, Mendy AJ, Slitt AL, et al. Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophenglutathione conjugation in mouse liver. Mol Pharmacol 2005; 68:1590-1596.
  34. Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006;7:551-561. https://doi.org/10.2217/14622416.7.4.551
  35. Zimprich F, Sunder-Plassmann R, Stogmann E, Gleiss A, Dal-Bianco A, Zimprich A, et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 2004;63:1087-1089. https://doi.org/10.1212/01.WNL.0000141021.42763.F6
  36. Tan NC, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 2004;63:1090-1092. https://doi.org/10.1212/01.WNL.0000137051.33486.C7
  37. Zimprich F, Sunder-Plassmann R, Stogmann E, Gleiss A, Dal-Bianco A, Zimprich A, et al. Association of ABCB1 gene haplotypes with pharmacoresistance in temporal lobe epilepsy. Neurology 2004;63:1087-1089. https://doi.org/10.1212/01.WNL.0000141021.42763.F6
  38. Hoffmann K, Gastens AM, Volk HA, Loscher W. Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 2006; 69:1-14. https://doi.org/10.1016/j.eplepsyres.2005.12.005

Cited by

  1. Significance of the expression of MRP1 and MRP2 in peripheral blood mononuclear cells of children with intractable epilepsy vol.10, pp.5, 2015, https://doi.org/10.3892/etm.2015.2746
  2. Exploring the Carbamazepine Interaction with Human Pregnane X Receptor and Effect on ABCC2 Using in Vitro and in Silico Approach vol.34, pp.7, 2017, https://doi.org/10.1007/s11095-017-2161-z
  3. The pharmacogenomics of valproic acid vol.62, pp.12, 2017, https://doi.org/10.1038/jhg.2017.91
  4. Categorization and association analysis of risk factors for adverse drug events pp.1432-1041, 2018, https://doi.org/10.1007/s00228-017-2373-5
  5. -24C>T SNP and Reduction in Triglycerides in Chilean Patients Treated With Atorvastatin vol.122, pp.5, 2018, https://doi.org/10.1111/bcpt.12943