DOI QR코드

DOI QR Code

Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome

  • Ahmed, Musaddeque (Department of Biological Sciences, Brock University) ;
  • Liang, Ping (Department of Biological Sciences, Brock University)
  • Received : 2013.10.18
  • Accepted : 2013.11.21
  • Published : 2013.12.31

Abstract

Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.

Keywords

References

  1. McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 2005;433:733-736. https://doi.org/10.1038/nature03258
  2. Lu J, Ruhf ML, Perrimon N, Leder P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc Natl Acad Sci U S A 2007; 104:9381-9386. https://doi.org/10.1073/pnas.0610279104
  3. Hublin JJ. Out of Africa: modern human origins special feature: the origin of Neandertals. Proc Natl Acad Sci U S A 2009; 106:16022-16027. https://doi.org/10.1073/pnas.0904119106
  4. Stringer CB, Hublin J. New age estimates for the Swanscombe hominid, and their significance for human evolution. J Hum Evol 1999;37:873-877. https://doi.org/10.1006/jhev.1999.0367
  5. Finlayson C, Pacheco FG, Rodríguez-Vidal J, Fa DA, Gutierrez López JM, Santiago Pérez A, et al. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 2006; 443:850-853. https://doi.org/10.1038/nature05195
  6. Grun R, Stringer C, McDermott F, Nathan R, Porat N, Robertson S, et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J Hum Evol 2005;49:316-334. https://doi.org/10.1016/j.jhevol.2005.04.006
  7. Krause J, Orlando L, Serre D, Viola B, Prufer K, Richards MP, et al. Neanderthals in central Asia and Siberia. Nature 2007;449:902-904. https://doi.org/10.1038/nature06193
  8. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69-87. https://doi.org/10.1038/nature04072
  9. Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007;316:222-234. https://doi.org/10.1126/science.1139247
  10. Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2006;2:e168. https://doi.org/10.1371/journal.pgen.0020168
  11. Prabhakar S, Noonan JP, Pääbo S, Rubin EM. Accelerated evolution of conserved noncoding sequences in humans. Science 2006;314:786. https://doi.org/10.1126/science.1130738
  12. Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Human-specific gain of function in a developmental enhancer. Science 2008;321:1346-1350. https://doi.org/10.1126/science.1159974
  13. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 2007;39:1140-1144. https://doi.org/10.1038/ng2104
  14. Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, et al. Inferring nonneutral evolution from human- chimp-mouse orthologous gene trios. Science 2003;302: 1960-1963. https://doi.org/10.1126/science.1088821
  15. Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE, Beazley C, et al. Fast-evolving noncoding sequences in the human genome. Genome Biol 2007;8:R118. https://doi.org/10.1186/gb-2007-8-6-r118
  16. Ponce de León MS, Golovanova L, Doronichev V, Romanova G, Akazawa T, Kondo O, et al. Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci U S A 2008;105:13764-13768. https://doi.org/10.1073/pnas.0803917105
  17. Mithen SJ. The Prehistory of the Mind: A Search for the Origins of Art, Religion and Science. Illustrated ed. London: Thames and Hudson, 1996.
  18. Stringer C, Gamble C. In Search of the Neanderthals: Solving the Puzzle of Human Origins. London: Thames & Hudson, 1993.
  19. Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, et al. Analysis of one million base pairs of Neanderthal DNA. Nature 2006;444:330-336. https://doi.org/10.1038/nature05336
  20. Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PL, Uhler C, et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 2008;134:416-426. https://doi.org/10.1016/j.cell.2008.06.021
  21. Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA. Science 2006;314:1113-1118. https://doi.org/10.1126/science.1131412
  22. Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, et al. Genomic sequencing of Pleistocene cave bears. Science 2005;309:597-599. https://doi.org/10.1126/science.1113485
  23. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 2006;311:392-394. https://doi.org/10.1126/science.1123360
  24. Ovchinnikov IV, Götherström A, Romanova GP, Kharitonov VM, Lidén K, Goodwin W. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 2000;404:490-493. https://doi.org/10.1038/35006625
  25. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Paabo S. Neandertal DNA sequences and the origin of modern humans. Cell 1997;90:19-30. https://doi.org/10.1016/S0092-8674(00)80310-4
  26. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 2009;325:318-321. https://doi.org/10.1126/science.1174462
  27. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science 2010;328:710-722. https://doi.org/10.1126/science.1188021
  28. Gravina B, Mellars P, Ramsey CB. Radiocarbon dating of interstratified Neanderthal and early modern human occupations at the Chatelperronian type-site. Nature 2005;438:51-56. https://doi.org/10.1038/nature04006
  29. Mellars P, Gravina B, Bronk Ramsey C. Confirmation of Neanderthal/modern human interstratification at the Chatelperronian type-site. Proc Natl Acad Sci U S A 2007;104: 3657-3662. https://doi.org/10.1073/pnas.0608053104
  30. Zilhão J, d'Errico F, Bordes JG, Lenoble A, Texier JP, Rigaud JP. Analysis of Aurignacian interstratification at the Chatelperronian- type site and implications for the behavioral modernity of Neandertals. Proc Natl Acad Sci U S A 2006;103:12643- 12648. https://doi.org/10.1073/pnas.0605128103
  31. Trinkaus E, Moldovan O, Milota S, Bîlgăr A, Sarcina L, Athreya S, et al. An early modern human from the Pestera cu Oase, Romania. Proc Natl Acad Sci U S A 2003;100:11231-11236. https://doi.org/10.1073/pnas.2035108100
  32. Bailey SE, Weaver TD, Hublin JJ. Who made the Aurignacian and other early Upper Paleolithic industries? J Hum Evol 2009;57:11-26. https://doi.org/10.1016/j.jhevol.2009.02.003
  33. Currat M, Excoffier L. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2004;2:e421. https://doi.org/10.1371/journal.pbio.0020421
  34. Evans PD, Mekel-Bobrov N, Vallender EJ, Hudson RR, Lahn BT. Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc Natl Acad Sci U S A 2006;103:18178-18183. https://doi.org/10.1073/pnas.0606966103
  35. Wall JD, Hammer MF. Archaic admixture in the human genome. Curr Opin Genet Dev 2006;16:606-610. https://doi.org/10.1016/j.gde.2006.09.006
  36. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 2007;17:1908- 1912. https://doi.org/10.1016/j.cub.2007.10.008
  37. Boeke JD, Pickeral OK. Retroshuffling the genomic deck. Nature 1999;398:108-109, 111. https://doi.org/10.1038/18118
  38. Damert A, Raiz J, Horn AV, Lower J, Wang H, Xing J, et al. 5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009;19:1992- 2008. https://doi.org/10.1101/gr.093435.109
  39. Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH Jr. Exon-trapping mediated by the human retrotransposon SVA. Genome Res 2009;19:1983-1991. https://doi.org/10.1101/gr.093153.109
  40. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
  41. Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 2004;303:1626-1632. https://doi.org/10.1126/science.1089670
  42. Wang J, Song L, Gonder MK, Azrak S, Ray DA, Batzer MA, et al. Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms. Gene 2006;365:11-20. https://doi.org/10.1016/j.gene.2005.09.031
  43. Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P. dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 2006;27:323-329. https://doi.org/10.1002/humu.20307
  44. Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
  45. Orlando L, Darlu P, Toussaint M, Bonjean D, Otte M, Hanni C. Revisiting Neandertal diversity with a 100,000 year old mtDNA sequence. Curr Biol 2006;16:R400-R402. https://doi.org/10.1016/j.cub.2006.05.019
  46. Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, et al. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2004;2:E57. https://doi.org/10.1371/journal.pbio.0020057
  47. Lalueza-Fox C, Rompler H, Caramelli D, Staubert C, Catalano G, Hughes D, et al. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 2007;318: 1453-1455. https://doi.org/10.1126/science.1147417
  48. Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A, Bertranpetit J, et al. Genetic characterization of the ABO blood group in Neandertals. BMC Evol Biol 2008;8:342. https://doi.org/10.1186/1471-2148-8-342
  49. Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A. Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol Lett 2009;5:809-811. https://doi.org/10.1098/rsbl.2009.0532
  50. Noonan JP. Neanderthal genomics and the evolution of modern humans. Genome Res 2010;20:547-553. https://doi.org/10.1101/gr.076000.108
  51. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008;18:610-621. https://doi.org/10.1101/gr.7179508
  52. Parikh H, Lyssenko V, Groop LC. Prioritizing genes for follow- up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Med Genomics 2009;2:72. https://doi.org/10.1186/1755-8794-2-72
  53. Hodgson JA, Disotell TR. No evidence of a Neanderthal contribution to modern human diversity. Genome Biol 2008;9:206. https://doi.org/10.1186/gb-2008-9-2-206
  54. Hardy J, Pittman A, Myers A, Gwinn-Hardy K, Fung HC, de Silva R, et al. Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens. Biochem Soc Trans 2005;33(Pt 4):582-585. https://doi.org/10.1042/BST0330582
  55. Lari M, Rizzi E, Milani L, Corti G, Balsamo C, Vai S, et al. The microcephalin ancestral allele in a Neanderthal individual. PLoS One 2010;5:e10648. https://doi.org/10.1371/journal.pone.0010648
  56. Akazawa T, Aoki K, Bar-Yosef O. Neandertals and Modern Humans in Western Asia. New York: Springer, 1999.
  57. Semino O, Santachiara-Benerecetti AS, Falaschi F, Cavalli- Sforza LL, Underhill PA. Ethiopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny. Am J Hum Genet 2002;70:265-268. https://doi.org/10.1086/338306
  58. Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, et al. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet 2001;65(Pt 1):43-62. https://doi.org/10.1046/j.1469-1809.2001.6510043.x
  59. Semino O, Magri C, Benuzzi G, Lin AA, Al-Zahery N, Battaglia V, et al. Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: inferences on the neolithization of Europe and later migratory events in the Mediterranean area. Am J Hum Genet 2004;74:1023-1034. https://doi.org/10.1086/386295
  60. Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 2008;18:830-838. https://doi.org/10.1101/gr.7172008
  61. Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, et al. A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes. Am J Hum Genet 2002;70:1197- 1214. https://doi.org/10.1086/340257
  62. Beleza S, Gusmão L, Lopes A, Alves C, Gomes I, Giouzeli M, et al. Micro-phylogeographic and demographic history of Portuguese male lineages. Ann Hum Genet 2006;70(Pt 2): 181-194. https://doi.org/10.1111/j.1529-8817.2005.00221.x
  63. Berniell-Lee G, Calafell F, Bosch E, Heyer E, Sica L, Mouguiama-Daouda P, et al. Genetic and demographic implications of the Bantu expansion: insights from human paternal lineages. Mol Biol Evol 2009;26:1581-1589. https://doi.org/10.1093/molbev/msp069
  64. Batzer MA, Deininger PL. A human-specific subfamily of Alu sequences. Genomics 1991;9:481-487. https://doi.org/10.1016/0888-7543(91)90414-A
  65. Batzer MA, Rubin CM, Hellmann-Blumberg U, Alegria- Hartman M, Leeflang EP, Stern JD, et al. Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 1995;247:418-427. https://doi.org/10.1006/jmbi.1994.0150
  66. Matera AG, Hellmann U, Schmid CW. A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 1990;10:5424-5432. https://doi.org/10.1128/MCB.10.10.5424
  67. Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, et al. Alu insertion polymorphisms for the study of human genomic diversity. Genetics 2001;159:279-290.
  68. Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem AH, Batzer MA, et al. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 1999;107:149-161. https://doi.org/10.1023/A:1003941704138
  69. Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A 2007;104:14616-14621. https://doi.org/10.1073/pnas.0704665104
  70. Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191. https://doi.org/10.1016/j.tig.2007.02.006
  71. Wang X, Grus WE, Zhang J. Gene losses during human origins. PLoS Biol 2006;4:e52. https://doi.org/10.1371/journal.pbio.0040052
  72. Olson MV. When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet 1999;64:18-23. https://doi.org/10.1086/302219
  73. Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 2004;428:415-418. https://doi.org/10.1038/nature02358
  74. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 2006;444:499-502. https://doi.org/10.1038/nature05295
  75. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers. Science 2003; 302:413. https://doi.org/10.1126/science.1088328
  76. Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet 2004;5:456-465. https://doi.org/10.1038/nrg1350
  77. Bejerano G, Haussler D, Blanchette M. Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 2004;20 Suppl 1:i40-i48. https://doi.org/10.1093/bioinformatics/bth946
  78. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975;188:107-116. https://doi.org/10.1126/science.1090005
  79. Lopez-Valenzuela M, Ramírez O, Rosas A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, et al. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans. Mol Biol Evol 2012;29:1797-1806. https://doi.org/10.1093/molbev/mss023
  80. Hünemeier T, Ruiz-Linares A, Silveira A, Paixão-Côrtes VR, Salzano FM, Bortolini MC. Brief communication: Population data support the adaptive nature of HACNS1 sapiens/neandertal- chimpanzee differences in a limb expression domain. Am J Phys Anthropol 2010;143:478-481. https://doi.org/10.1002/ajpa.21378
  81. Hadley D, Murphy T, Valladares O, Hannenhalli S, Ungar L, Kim J, et al. Patterns of sequence conservation in presynaptic neural genes. Genome Biol 2006;7:R105. https://doi.org/10.1186/gb-2006-7-11-r105
  82. Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006;443: 167-172. https://doi.org/10.1038/nature05113
  83. Burbano HA, Green RE, Maricic T, Lalueza-Fox C, de la Rasilla M, Rosas A, et al. Analysis of human accelerated DNA regions using archaic hominin genomes. PLoS One 2012;7:e32877. https://doi.org/10.1371/journal.pone.0032877
  84. Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, et al. A humanized version of FOXP2 affects cortico- basal ganglia circuits in mice. Cell 2009;137:961-971. https://doi.org/10.1016/j.cell.2009.03.041
  85. Wade N. Scientists in germany draft Neanderthal genome. The New York Times 2009 Feb 12:A12.
  86. Pennisi E. Paleogenetics. Cloned Neandertals still in the realm of sci-fi. Science 2010;328:682-683. https://doi.org/10.1126/science.328.5979.682

Cited by

  1. On multilocus population genetic structure: I. Description of gametic disequilibrium architecture vol.53, pp.6, 2017, https://doi.org/10.1134/S1022795417050076
  2. О МНОГОЛОКУСНОЙ ГЕНЕТИЧЕСКОЙ СТРУКТУРЕ ПОПУЛЯЦИИ. I. ОПИСАНИЕ АРХИТЕКТУРЫ ГАМЕТИЧЕСКИХ НЕРАВНОВЕСНОСТЕЙ, "Генетика" pp.6, 2017, https://doi.org/10.7868/S0016675817050083