DOI QR코드

DOI QR Code

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon (Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center) ;
  • Kim, MinSoo (Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center) ;
  • Xiao, Guanghua (Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center) ;
  • Hwang, Tae Hyun (Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center)
  • 투고 : 2013.10.15
  • 심사 : 2013.11.21
  • 발행 : 2013.12.31

초록

Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

키워드

참고문헌

  1. Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol 2000;18:1257-1261. https://doi.org/10.1038/82360
  2. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
  3. Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005;33:D428-D432.
  4. Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Brief Bioinform 2006;7: 243-255. https://doi.org/10.1093/bib/bbl022
  5. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5: 101-113. https://doi.org/10.1038/nrg1272
  6. Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev 2007;21: 1010-1024. https://doi.org/10.1101/gad.1528707
  7. Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002;4:129-153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438
  8. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009;25:195-203. https://doi.org/10.1016/j.nbt.2008.12.009
  9. Fields S, Sternglanz R. The two-hybrid system: an assay for protein-protein interactions. Trends Genet 1994;10:286-292. https://doi.org/10.1016/0168-9525(90)90012-U
  10. Murali T, Pacifico S, Yu J, Guest S, Roberts GG 3rd, Finley RL Jr. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 2011;39:D736-D743. https://doi.org/10.1093/nar/gkq1092
  11. Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res 2000;28:37-40. https://doi.org/10.1093/nar/28.1.37
  12. Prasad TS, Kandasamy K, Pandey A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 2009;577:67-79. https://doi.org/10.1007/978-1-60761-232-2_6
  13. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006;34:D535-D539. https://doi.org/10.1093/nar/gkj109
  14. Breitkreutz BJ, Stark C, Tyers M. The GRID: the general repository for interaction datasets. Genome Biol 2003;4:R23. https://doi.org/10.1186/gb-2003-4-3-r23
  15. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004;32:D449-D451. https://doi.org/10.1093/nar/gkh086
  16. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-D815. https://doi.org/10.1093/nar/gks1094
  17. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012;40:D857-D861. https://doi.org/10.1093/nar/gkr930
  18. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res 2012;40:D841-D846. https://doi.org/10.1093/nar/gkr1088
  19. Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res 2007;35:D137-D140. https://doi.org/10.1093/nar/gkl1041
  20. Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2013;41:D203-D213. https://doi.org/10.1093/nar/gks1201
  21. Altman RB, Bergman CM, Blake J, Blaschke C, Cohen A, Gannon F, et al. Text mining for biology: The way forward: opinions from leading scientists. Genome Biol 2008;9 Suppl 2:S7.
  22. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol 2008;9 Suppl 2:S4.
  23. Krallinger M, Valencia A. Text-mining and information- retrieval services for molecular biology. Genome Biol 2005;6:
  24. Ananiadou S, Pyysalo S, Tsujii J, Kell DB. Event extraction for systems biology by text mining the literature. Trends Biotechnol 2010;28:381-390. https://doi.org/10.1016/j.tibtech.2010.04.005
  25. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004;306:636-640. https://doi.org/10.1126/science.1105136
  26. Cheng C, Yan KK, Hwang W, Qian J, Bhardwaj N, Rozowsky J, et al. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 2011;7:e1002190. https://doi.org/10.1371/journal.pcbi.1002190
  27. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012;489:91-100. https://doi.org/10.1038/nature11245
  28. Washington NL, Stinson EO, Perry MD, Ruzanov P, Contrino S, Smith R, et al. The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details. Database (Oxford) 2011;2011:bar023.
  29. Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale gene networks. PLoS One 2012;7:e29348. https://doi.org/10.1371/journal.pone.0029348
  30. Lauritzen SL. Graphical Models. Oxford: Clarendon Press, 1996.
  31. Meinshausen N, Buhlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Stat 2006;34:1436- 1462. https://doi.org/10.1214/009053606000000281
  32. Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc 2009;104:735-746. https://doi.org/10.1198/jasa.2009.0126
  33. Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007;94:19-35. https://doi.org/10.1093/biomet/asm018
  34. Banerjee O, El Ghaoui L, d'Aspremont A. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J Mach Learn Res 2008; 9:485-516.
  35. d'Aspremont A, Banerjee O, El Ghaoui L. First-order methods for sparse covariance selection. SIAM J Matrix Anal Appl 2008;30:56-66. https://doi.org/10.1137/060670985
  36. Fan J, Feng Y, Wu Y. Network exploration via the adaptive Lasso and Scad penalties. Ann Appl Stat 2009;3:521-541. https://doi.org/10.1214/08-AOAS215
  37. Rothman AJ, Bickel PJ, Levina E, Zhu J. Sparse permutation invariant covariance estimation. Electron J Stat 2008;2: 494-515. https://doi.org/10.1214/08-EJS176
  38. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008;9: 432-441. https://doi.org/10.1093/biostatistics/kxm045
  39. Schäfer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005;21:754-764. https://doi.org/10.1093/bioinformatics/bti062
  40. Cai T, Liu W, Luo X. A constrained l1 minimization approach to sparse precision matrix estimation. J Am Stat Assoc 2011; 106:594-607. https://doi.org/10.1198/jasa.2011.tm10155
  41. Myllymäki P, Silander T, Tirri H, Uronen P. B-course: a web-based tool for Bayesian and causal data analysis. Int J Artif Intell Tools 2002;11:369-387. https://doi.org/10.1142/S0218213002000940
  42. Murphy KP. The bayes net toolbox for Matlab. Comput Sci Stat 2001;33:1024-1034.
  43. Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 2006;22:2523-2531. https://doi.org/10.1093/bioinformatics/btl391
  44. Carter SL, Brechbühler CM, Griffin M, Bond AT. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004;20: 2242-2250. https://doi.org/10.1093/bioinformatics/bth234
  45. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005;4:Article17.
  46. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559. https://doi.org/10.1186/1471-2105-9-559
  47. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000:418-429.
  48. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005;37:382-390. https://doi.org/10.1038/ng1532
  49. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006;7 Suppl 1:S7.
  50. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007;5:e8. https://doi.org/10.1371/journal.pbio.0050008
  51. Fu Y, Jarboe LR, Dickerson JA. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinformatics 2011;12:233. https://doi.org/10.1186/1471-2105-12-233
  52. Zhang X, Liu K, Liu ZP, Duval B, Richer JM, Zhao XM, et al. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics 2013;29:106-113. https://doi.org/10.1093/bioinformatics/bts619
  53. Kolaczyk ED. Statistical Analysis of Network Data: Methods and Models. New York: Springer, 2009.
  54. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  55. Andrade M, Casari G, de Daruvar A, Sander C, Schneider R, Tamames J, et al. Sequence analysis of the Methanococcus jannaschii genome and the prediction of protein function. Comput Appl Biosci 1997;13:481-483.
  56. Fetrow JS, Skolnick J. Method for prediction of protein function from sequence using the sequence-to-structure-tofunction paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol 1998;281:949-968. https://doi.org/10.1006/jmbi.1998.1993
  57. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 1988;85: 2444-2448. https://doi.org/10.1073/pnas.85.8.2444
  58. Murali TM, Wu CJ, Kasif S. The art of gene function prediction. Nat Biotechnol 2006;24:1474-1475. https://doi.org/10.1038/nbt1206-1474
  59. Costanzo MC, Hogan JD, Cusick ME, Davis BP, Fancher AM, Hodges PE, et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 2000;28:73-76. https://doi.org/10.1093/nar/28.1.73
  60. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623-627. https://doi.org/10.1038/35001009
  61. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 2000;97:1143-1147. https://doi.org/10.1073/pnas.97.3.1143
  62. Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T. Assessment of prediction accuracy of protein function from protein: protein interaction data. Yeast 2001;18:523-531. https://doi.org/10.1002/yea.706
  63. Chua HN, Sung WK, Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006;22: 1623-1630. https://doi.org/10.1093/bioinformatics/btl145
  64. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. https://doi.org/10.1038/75556
  65. Chi X, Hou J. An iterative approach of protein function prediction. BMC Bioinformatics 2011;12:437. https://doi.org/10.1186/1471-2105-12-437
  66. Vazquez A, Flammini A, Maritan A, Vespignani A. Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 2003;21:697-700. https://doi.org/10.1038/nbt825
  67. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, et al. Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci U S A 2004;101:2888-2893. https://doi.org/10.1073/pnas.0307326101
  68. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graphtheoretic analysis of interaction maps. Bioinformatics 2005;21 Suppl 1:i302-i310. https://doi.org/10.1093/bioinformatics/bti1054
  69. Tsuda K, Shin H, Schölkopf B. Fast protein classification with multiple networks. Bioinformatics 2005;21 Suppl 2:ii59-ii65.
  70. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 2008;9 Suppl 1:S4.
  71. Wang J, Li Y. Sequential linear neighborhood propagation for semi-supervised protein function prediction. J Bioinform Comput Biol 2011;9:663-679. https://doi.org/10.1142/S0219720011005550
  72. Moosavi S, Rahgozar M, Rahimi A. Protein function prediction using neighbor relativity in protein-protein interaction network. Comput Biol Chem 2013;43:11-16. https://doi.org/10.1016/j.compbiolchem.2012.12.003
  73. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res 1998;26:73-79. https://doi.org/10.1093/nar/26.1.73
  74. Deng M, Zhang K, Mehta S, Chen T, Sun F. Prediction of protein function using protein-protein interaction data. J Comput Biol 2003;10:947-960. https://doi.org/10.1089/106652703322756168
  75. Deng M, Tu Z, Sun F, Chen T. Mapping Gene Ontology to proteins based on protein-protein interaction data. Bioinformatics 2004;20:895-902. https://doi.org/10.1093/bioinformatics/btg500
  76. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007;6:439-450. https://doi.org/10.1074/mcp.M600381-MCP200
  77. Kourmpetis YA, van Dijk AD, Bink MC, van Ham RC, ter Braak CJ. Bayesian Markov Random Field analysis for protein function prediction based on network data. PLoS One 2010;5:e9293. https://doi.org/10.1371/journal.pone.0009293
  78. Nariai N, Kolaczyk ED, Kasif S. Probabilistic protein function prediction from heterogeneous genome-wide data. PLoS One 2007;2:e337. https://doi.org/10.1371/journal.pone.0000337
  79. Jiang X, Nariai N, Steffen M, Kasif S, Kolaczyk ED. Integration of relational and hierarchical network information for protein function prediction. BMC Bioinformatics 2008;9:350. https://doi.org/10.1186/1471-2105-9-350
  80. Jiang X, Gold D, Kolaczyk ED. Network-based auto-probit modeling for protein function prediction. Biometrics 2011; 67:958-966. https://doi.org/10.1111/j.1541-0420.2010.01519.x
  81. Lanckriet GR, De Bie T, Cristianini N, Jordan MI, Noble WS. A statistical framework for genomic data fusion. Bioinformatics 2004;20:2626-2635. https://doi.org/10.1093/bioinformatics/bth294
  82. Lee H, Tu Z, Deng M, Sun F, Chen T. Diffusion kernel-based logistic regression models for protein function prediction. OMICS 2006;10:40-55. https://doi.org/10.1089/omi.2006.10.40
  83. Wang H, Huang H, Ding C. Function-function correlated multi-label protein function prediction over interaction networks. J Comput Biol 2013;20:322-343. https://doi.org/10.1089/cmb.2012.0272
  84. Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671-680. https://doi.org/10.1126/science.220.4598.671
  85. Li SZ. Markov Random Field Modeling in Computer Vision. Berlin: Springer-Verlag, 1995.
  86. Vandenberghe L, Boyd S. Semidefinite programming. SIAM Rev 1996;38:49-95. https://doi.org/10.1137/1038003
  87. Kondor RI, Lafferty JD. Diffusion kernels on graphs and other discrete input spaces. In: ICML '02 Proceedings of the Nineteenth International Conference on Machine Learning, 2002 Jul 8-12, Sydney. pp. 315-322.
  88. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 2006;38:285-293. https://doi.org/10.1038/ng1747
  89. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, et al. A protein- protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006; 125:801-814. https://doi.org/10.1016/j.cell.2006.03.032
  90. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007;318:1108-1113. https://doi.org/10.1126/science.1145720
  91. Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008;82:949-958. https://doi.org/10.1016/j.ajhg.2008.02.013
  92. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol 2008;4:189.
  93. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 2010;6:e1000641. https://doi.org/10.1371/journal.pcbi.1000641
  94. Hwang T, Kuang R. A heterogeneous label propagation algorithm for disease gene discovery. In: Proceeding of the SIAM International Conference on Data Mining, 2010 Apr 29-May 1, Columbus, OH. pp. 583-594.
  95. Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B. Learning with local and global consistency. Adv Neural Inf Process Syst 2004;16:321-328.
  96. McKusick VA, Antonarakis SE. Mendelian Inheritance in Man: A Catalog of Human Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press, 1998.
  97. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 2003;31: 248-250. https://doi.org/10.1093/nar/gkg056
  98. Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics 2005;21:2076-2082. https://doi.org/10.1093/bioinformatics/bti273
  99. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: integrating information about genes, proteins and diseases. Trends Genet 1997;13:163. https://doi.org/10.1016/S0168-9525(97)01103-7
  100. Ulfarsson MO, Solo V. Tuning parameter selection for underdetermined reduced-rank regression. IEEE Signal Process Lett 2013;20:881-884. https://doi.org/10.1109/LSP.2013.2272463
  101. Fan Y, Tang CY. Tuning parameter selection in high dimensional penalized likelihood. J R Stat Soc Series B Stat Methodol 2013;75:531-552. https://doi.org/10.1111/rssb.12001
  102. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease genes by network-based boosting of genome- wide association data. Genome Res 2011;21:1109- 1121. https://doi.org/10.1101/gr.118992.110
  103. Akula N, Baranova A, Seto D, Solka J, Nalls MA, Singleton A, et al. A network-based approach to prioritize results from genome- wide association studies. PLoS One 2011;6:e24220. https://doi.org/10.1371/journal.pone.0024220
  104. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 2011; 27:95-102. https://doi.org/10.1093/bioinformatics/btq615
  105. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2009; 37:D5-D15. https://doi.org/10.1093/nar/gkn741
  106. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, et al. NCBI GEO: mining millions of expression profiles: database and tools. Nucleic Acids Res 2005;33:D562- D566.
  107. Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, et al. The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res 2003; 31:94-96. https://doi.org/10.1093/nar/gkg078
  108. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Res 2009;37:D211-D215. https://doi.org/10.1093/nar/gkn785
  109. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc 2000;48:1618-1625. https://doi.org/10.1111/j.1532-5415.2000.tb03873.x
  110. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-534. https://doi.org/10.1038/ng.357
  111. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-678. https://doi.org/10.1038/nature05911
  112. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870-874. https://doi.org/10.1038/ng2075
  113. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 2009;41:986-990. https://doi.org/10.1038/ng.429
  114. Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S. Integrated network analysis platform for protein- protein interactions. Nat Methods 2009;6:75-77. https://doi.org/10.1038/nmeth.1282
  115. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, et al. A large-scale evaluation of computational protein function prediction. Nat Methods 2013;10:221-227. https://doi.org/10.1038/nmeth.2340
  116. Cancer Genome Atals Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330-337. https://doi.org/10.1038/nature11252
  117. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67-73. https://doi.org/10.1038/nature12113
  118. Wang T, Zhu L. Consistent tuning parameter selection in high dimensional sparse linear regression. J Multivar Anal 2011;102:1141-1151. https://doi.org/10.1016/j.jmva.2011.03.007
  119. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:P3. https://doi.org/10.1186/gb-2003-4-5-p3
  120. Fan J, Liao Y, Mincheva M. Large covariance estimation by thresholding principal orthogonal complements. J R Stat Soc Series B Stat Methodol 2013;75:603-680. https://doi.org/10.1111/rssb.12016
  121. Sangalli LM, Ramsay JO, Ramsay TO. Spatial spline regression models. J R Stat Soc Series B Stat Methodol 2013; 75:681-703. https://doi.org/10.1111/rssb.12009
  122. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol 2007;3:88.
  123. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Networkbased stratification of tumor mutations. Nat Methods 2013; 10:1108-1115. https://doi.org/10.1038/nmeth.2651
  124. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474: 609-615. https://doi.org/10.1038/nature10166
  125. Cancer Genome Atals Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70. https://doi.org/10.1038/nature11412
  126. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002;417:399-403. https://doi.org/10.1038/nature750

피인용 문헌

  1. A Genetically Modified Protein-Based Hydrogel for 3D Culture of AD293 Cells vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0107949
  2. Systems biology meets -omic technologies: novel approaches to biomarker discovery and companion diagnostic development vol.15, pp.2, 2015, https://doi.org/10.1586/14737159.2015.975214
  3. Deciphering complex patterns of class-I HLA–peptide cross-reactivity via hierarchical grouping vol.93, pp.6, 2015, https://doi.org/10.1038/icb.2015.3
  4. Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy vol.16, pp.1, 2016, https://doi.org/10.1186/s12935-016-0290-9
  5. CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction vol.17, pp.1, 2016, https://doi.org/10.1186/s12859-016-0964-2
  6. Seasonal Dynamics and Metagenomic Characterization of Marine Viruses in Goseong Bay, Korea vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169841
  7. Graph-theoretical model of global human interactome reveals enhanced long-range communicability in cancer networks vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0170953
  8. On the Variable Ordering in Subgraph Isomorphism Algorithms vol.14, pp.1, 2017, https://doi.org/10.1109/TCBB.2016.2515595
  9. Biological network border detection vol.9, pp.12, 2017, https://doi.org/10.1039/C7IB00161D
  10. Network Structure Inference, A Survey vol.51, pp.2, 2018, https://doi.org/10.1145/3154524
  11. Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells vol.26, pp.3, 2018, https://doi.org/10.4062/biomolther.2017.240
  12. Bipartite graphs in systems biology and medicine: a survey of methods and applications vol.7, pp.4, 2018, https://doi.org/10.1093/gigascience/giy014