DOI QR코드

DOI QR Code

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model

SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가

  • Jeong, Hyeon Gyo (River Information Center, Han River Flood Control Office) ;
  • Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Ha, Rim (Dept. of Civil and Environmental System Engineering, Konkuk University, College of Life & Environmental Sciences, Konkuk Univ.)
  • 정현교 (한강홍수통제소 하천정보센터) ;
  • 김성준 (건국대학교 사회환경시스템공학과) ;
  • 하림 (건국대학교 사회환경시스템공학과)
  • Received : 2013.03.08
  • Accepted : 2013.11.18
  • Published : 2013.12.31

Abstract

This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.

본 연구에서는 충주댐($2750{\times}10^6m^3$) 및 조정지댐($30{\times}10^6m^3$)을 포함한 유역을 대상으로 미래 기후변화가 댐 저수량에 미치는 영향을 분석하기 위해 SWAT(Soil and Water Assessment Tool) 모형을 활용하였다. 3지점의 9개년(2002~2010)동안의 자료를 이용하여 검보정을 실시한 결과 유출량에 대해서는 Nash-Sutcliffe 모델 효율(NSE)이 0.73으로, 두 댐의 저수위에 대해서는 0.86으로 나타났다. 미래 기후변화 시나리오자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 GCMs (General Circulation Models) 중 HadCM3 모델의 SRES(Special Report on Emission Scenarios)에 의한 B1과 A2 시나리오를 구축하였다. 미래 월별 기온과 강수자료는 과거 30개년(1977~2006, baseline period) 자료는 편의보정(bias-correction) 기법을 이용하여 오차보정 후, Change Factor (CF) method를 이용하여 상세화 하였다. 미래 연평균 기온은 2040s (2031~2050)에 $0.9^{\circ}C$, 2080s (2071~2099)에는 $4.0^{\circ}C$까지 증가할 것으로 예측되었고, 연평균 강수량은 2040s에 9.6%, 2080s에 20.7% 증가하는 것으로 나타났다. 과거 대비 미래 증발산량은 15.3%까지 증가하고, 토양수분은 최대 2.8% 감소하였다. 과거 9개년 평균 댐 방류스케줄에 따른 미래 댐 연평균 유입량은 가을철을 제외한 대부분 기간에 최대 21.1%까지 증가하는 경향을 보였다. 미래 가을철 댐 유입의 감소로 인해 현재 방류 패턴으로는 연말까지 결국 저수량을 회복하지 못하는 것으로 나타났다. 미래 풍수년과 갈수년에는 댐 저수량의 시간적 변동이 더욱 불안정해지므로 각각 저수량의 상향 및 하향 조정에 주의를 기울여야 한다. 따라서 기후변화 적응을 위한 댐 방류 패턴 조절이 필요하다고 판단된다.

Keywords

References

  1. Alcamo, J., Doll, P., Kaspar, F., and Siebert, S. (1997). Global change and global scenarios ofwater use and availability: an application of WaterGAP 1.0. Report A9701, Center for Environmental Systems Research, University of Kassel, Germany.
  2. Chung, G.H., Ryu, G.H., and Kim, J.H. (2010). "Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 10, No. 1, pp. 89-102.
  3. Diaz-nieto, J., and Wilby, R.L. (2005). "A comparison of statistical downscaling and climate change factor methods impacts on low flows in the River Thames." Climatic Change, Vol. 69, pp. 245-268. https://doi.org/10.1007/s10584-005-1157-6
  4. Kwadijk, J., and Rotmans, J. (1995). "The impact of climate change on the discharge of the river. Rhine: a scenario study." Climate Change, Vol. 30, pp. 397-426. https://doi.org/10.1007/BF01093854
  5. Lee, Y.J., Park, M.J., Park, K,W., and Kim, S.J. (2008). "Analysis of Hydrologic Behavior Including Agricultural Reservoir Operation using SWAT Model." Journal of Korea Association of Geographic Information Studies, KAGIS, Vol. 11, No. 1, pp. 20-30.
  6. Lim, H.J., Kwon, H.J., Bae, D.H., and Kim, S.J. (2006). "Analysis of Hydrological Impact using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam watershed." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 5, pp. 453-466. https://doi.org/10.3741/JKWRA.2006.39.5.453
  7. Nash, J.E., and Sutcliffe, J.E. (1970). "River flow forecasting through conceptual models, Part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  8. Park, G.A., Ahn, S.R., Lee, Y.J. Shin, H.J., Park, M.J., and Kim, S.J. (2009). "Assessment Of Climate Change Impact On The Inflow And Outflow Of Two Agricultural Reservoirs In Korea." Transactions of the American Society of Agricultural and Biological Engineers, ASABE, Vol. 52, No. 6, pp. 1869-1883.
  9. Park, G.A., Ahn, S.R., Park, M.J., and Kim, S.J. (2010). "Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model(II)-Calibration, Validation and Application of the Model-." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 2B, pp. 121-135.
  10. Park, J.Y., Park, M.J., Ahn, S.R., and Kim, S.J. (2009). "Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 10, pp. 877-889. https://doi.org/10.3741/JKWRA.2009.42.10.877
  11. Park, M.J., Park, G.A., and Kim, S.J. (2007). "Analysis of Hydrologic Behavior of SLURP Model Including Agricultural Reservoir Operation." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 27, No. 5B, pp. 515-523.
  12. Park, M.J., Shin, H.J., Park, G.A., and Kim, S.J. (2010). "Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 4B, pp. 337-346.
  13. Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
  14. Wilby, R.L., and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames." Water Resources Research, Vol. 42, pp. 1-10.

Cited by

  1. Uncertainty of Hydro-meteorological Predictions Due to Climate Change in the Republic of Korea vol.47, pp.3, 2014, https://doi.org/10.3741/JKWRA.2014.47.3.257
  2. Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios vol.18, pp.1, 2015, https://doi.org/10.11108/kagis.2015.18.1.156
  3. Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed vol.35, pp.3, 2015, https://doi.org/10.12652/Ksce.2015.35.3.0567
  4. A case study for ANN-based rainfall–runoff model considering antecedent soil moisture conditions in Imha Dam watershed, Korea vol.74, pp.2, 2015, https://doi.org/10.1007/s12665-015-4117-0
  5. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863
  6. Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model vol.56, pp.3, 2014, https://doi.org/10.5389/KSAE.2014.56.3.019