References
- E. Baysal, M. Altinok, M. Colak, S. K. Ozaki, and H. Toker, Fire resistance of douglas fir (psedotsuga menzieesi) treated with borates and natural extractives, Bioresour. Technol., 98, 1101 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
- O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme retardant treated plyood, Polym. Degrad. Stab., 64, 529 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
- Y. J. Chung, Comparison of combustion proprties of native wood species used for fire pots in Korea, J. Ind. Chem. Eng., 16, 15 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
- Article 43 of Building Code, Article 61 of Enforcement Ordinance, the Internal Finish Material of the Building (2004).
- Article 12 of Fire fighting Basic Law, Article 20 of Decree, the Subject Merchandise Flame and Flame Performance Standard (2005).
- P. W. Lee and J. H. Kwon, Effects of the treated chemicals on fire retardancy of fire retardant treated particleboards, Mogjae-Gonghak, 11, 16 (1983).
- T. S. Mcknight, The hygroscopicity of Wood Treated with Fire-retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
- J. C. Middleton, S. M. Dragoner, and F. T. Winters, Jr., An evaluation of borates and other inorganic salts as fire retardants for wood products, Fore. Prod. J., 15, 463 (1965).
- I. S. Goldstein and W. A. Dreher, A. non-hygroscopic fire retardant treatment for wood, Froe. Prod. J., 11, 235 (1961).
- R. Kozlowski and M. Hewig, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
- R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The strucure- activity relationship of retardant phosphorus compounds in wood, Polym. Degrad. Stab., 91, 832 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
- Y. J. Chung, Y. H. Kim, and S. B. Kim, Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II), J. Ind. Chem. Eng., 15, 888 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
- Y. J. Chung, Flame retardancy of veneers treated by ammonium salts, J. Korean Ind. Eng. Chem., 18, 251 (2007).
- M. L. Hardy, Regulatory status and environmental properties of brominated flame retardants undergoing risk assessment in the EU: DBDPO, OBDPO, PeBDPO, and HBCD, Polym. Degrad. Stab., 64, 545 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
- Y. Tanaka, Epoxy Resin chemistry and Technology, Marcel Dekker, New York (1988).
- V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
- M. M. Hirschler, Thermal decomposition and chemical composition, 239, ACS Symposium Series, 797 (2001).
- ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1 : Heat Release Rate (Cone Calorimeter Method), Genever (2002).
- C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus- nitrogen compounds, Korean Patent, 2011-0034978 (2011).
- Y. J. Chung and E. Jin, Synthesis of dialkylaminoalkyl phosphonic acid and bis(dialkylaminoalkyl) phosphinic acid derivatives, Appl. Chem. Eng., 23, 383 (2012).
- Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd (2009).
- W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, 1, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
- M. J. Spearpoint, Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model, 30. NIST GCR 99-775, U.S.A. (1999).
- F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Analysis in Polymer Flammability, Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981).
- J. D. DeHaan, Kirks's Fire Investigation, Fifth Edition, 84, Prentice Hall, New Jersey, U.S.A. (2002).
- V. Babrauskas, Development of cone calorimeter-a bench-scale heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81 (1984). doi: 1002/fam.810080206. https://doi.org/10.1002/fam.810080206
- V. Babrauskas and S. J. Grayson, Heat Release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK (1992).
- M. Risholm-Sundman, M. Lundgren, E. Vestin, and P. Herder, Emissions of acetic acid and other volatile organic compounds from different species of solid wood, Holz als Roh-und Werkstoff, 56, 125 (1998). https://doi.org/10.1007/s001070050282
- V. Babrauskas, Heat Release Rate, Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
- S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, and F. Poutch, Flame retarded polyurea with microencasulated ammonium phosphate for textile coating, Polym. Dgred.Stab., 88, 106 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.01.028
- J. M. Choi, A study on combustion Characteristics of fire retardant treated pinus desiflora and pinus koraensis, Mokchae Konghak, 39, 244 (2011).
- M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Safety J., 38, 219 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
- M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, combustion and flame, Combust. Flame, 123, 308 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
- M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability assesment of fire-retarded nordic spruce wood using thermogravimetric analyses and cone calorimettry, Fire Safety J., 44, 1053 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
- J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
Cited by
- Combustion Characteristics of Medium Density Fibreboard (MDF) Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acids vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1066
- Combustive Properties of Medium Density Fibreboard (MDF) Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives vol.28, pp.4, 2014, https://doi.org/10.7731/KIFSE.2014.28.4.057
- Evaluation of Combustion Gas for Carbon Oxide of Wood Coated with Bis-(dialkylaminoalkyl) Phosphinic Acids Additives vol.30, pp.4, 2016, https://doi.org/10.7731/KIFSE.2016.30.4.065
- 알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성 vol.27, pp.6, 2013, https://doi.org/10.7731/kifse.2013.27.6.057