DOI QR코드

DOI QR Code

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment

바이오에너지 생산 및 폐수처리를 위한 미생물연료전지

  • Nah, Jaw-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University)
  • 나재운 (순천대학교 고분자공학과) ;
  • 노성희 (조선대학교 생명화학공학)
  • Received : 2013.09.11
  • Published : 2013.12.10

Abstract

A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.

미생물연료전지는 혐기성 조건에서 미생물의 촉매 반응을 통해 유기물질의 화학에너지를 전기에너지로 변환하는 생물전기화학 장치이다. 미생물연료전지의 전력밀도 및 쿨롱효율은 산화전극 챔버 내 미생물의 종류, 시스템 구성요소 및 운전조건에 영향을 받는다. 미생물연료전지에서 달성할 수 있는 전력은 구성요소, 물리적 및 화학적 운전조건, 바이오 촉매 선택 등의 최적화로 디자인을 변형하여 현저하게 증가시킬 수 있다. 본 총설에서는 미생물연료전지의 구성, 운전 매개변수의 최적화 및 성능과 더불어 장래 응용에 대한 최근 연구를 중점적으로 고찰하고자 한다.

Keywords

References

  1. B. E. Logan and K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Sci., 337, 686 (2012). https://doi.org/10.1126/science.1217412
  2. H. Moon, I. S. Chang, and B. H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell, Bioresource Technol., 97, 621 (2006). https://doi.org/10.1016/j.biortech.2005.03.027
  3. Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochem., 59, 121 (2003). https://doi.org/10.1016/S1567-5394(03)00018-5
  4. D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292 (2000). https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  5. S. H. Roh, S. W. Lee, K. R. Kim, and S. I. Kim, Electricity generation from dairy wastewater using microbial fuel cell, J. Korean Ind. Eng. Chem., 23, 297 (2012).
  6. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Alterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181 (2006). https://doi.org/10.1021/es0605016
  7. J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator and membrane-less microbial fuel cell, Process Biochem., 39, 1007 (2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  8. G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Operational parameters affecting the prformannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327 (2003). https://doi.org/10.1016/S0956-5663(02)00110-0
  9. H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040 (2004). https://doi.org/10.1021/es0499344
  10. S. Oh, B. Min, and B. E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900 (2004). https://doi.org/10.1021/es049422p
  11. Z. W. Du, H. R. Li, and T. Y. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25, 464 (2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
  12. K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23, 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  13. B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512 (2006). https://doi.org/10.1016/j.tim.2006.10.003
  14. I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163 (2006).
  15. D. R. Lovley, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327 (2006). https://doi.org/10.1016/j.copbio.2006.04.006
  16. B. H. Kim, I. S. Chang, and G. M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol., 76, 485 (2007). https://doi.org/10.1007/s00253-007-1027-4
  17. D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nat. Rev. Microbiol., 4, 497 (2006). https://doi.org/10.1038/nrmicro1442
  18. U. Schorder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619 (2007). https://doi.org/10.1039/b703627m
  19. P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstrate, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564 (2007). https://doi.org/10.1021/es0709831
  20. U. Schörder, J. Niebn, and F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42, 2880 (2003). https://doi.org/10.1002/anie.200350918
  21. Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, Carbon nanotube/ polyaniline composite as anode aterial for microbial fuel cells, J. Power Sources, 170, 79 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.048
  22. S. I. Kim, J. W. Lee, and S. H. Roh, Performance of polyacrylonitrile- carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells, J. Nanosci. Nanotechnol., 11, 1364 (2011). https://doi.org/10.1166/jnn.2011.3311
  23. J. Xu, G. P. Sheng, H. W. Luo, W. W. Li, L. F. Wang, and H. Q. Yu, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817 (2012). https://doi.org/10.1016/j.watres.2011.12.060
  24. Z. Li, L. Yao, L. Kong, and H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresource Technol., 99, 1650 (2008). https://doi.org/10.1016/j.biortech.2007.04.003
  25. D. H. Park and J. G. Zeikus, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403 (1999).
  26. S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nat. Biotechnol., 21, 1229 (2003). https://doi.org/10.1038/nbt867
  27. K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531 (2003). https://doi.org/10.1023/A:1025484009367
  28. B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675 (2005). https://doi.org/10.1016/j.watres.2005.02.002
  29. G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, and B. F. Thurston, Electron-transfer coupling in microbial fuel cells, J. Chem. Tech. Biotechnol., 34B, 13 (1984).
  30. K. Rabaey, P. Clauwaert, P. Aelterman, and W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077 (2005). https://doi.org/10.1021/es050986i
  31. J. R. Kim, S. H. Jung, J. M. Regan, and B. E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource Technol., 98, 2568 (2007). https://doi.org/10.1016/j.biortech.2006.09.036
  32. Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40, 5212 (2006). https://doi.org/10.1021/es060394f
  33. P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388 (2006). https://doi.org/10.1021/es0525511
  34. Z. He, S. D. Minteer, and L. T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol., 39, 5262 (2005). https://doi.org/10.1021/es0502876
  35. E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
  36. S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915 (2007). https://doi.org/10.1021/es062611i
  37. K. Rabaey, N. Boon, M. Hofte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401 (2005). https://doi.org/10.1021/es048563o
  38. R. A. Bullen, T. Arnot, J. B. Lakeman, and F. C. Walsh, Biofuel cells and their development, Biosens. Bioelectron, 21, 2015 (2006). https://doi.org/10.1016/j.bios.2006.01.030
  39. S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Techol., 40, 364 (2006). https://doi.org/10.1021/es0512071
  40. S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells, Electrochem. Acta., 53, 598 (2007). https://doi.org/10.1016/j.electacta.2007.07.037
  41. M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schörder, and F. Scholz, Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, Appl. Catal. B Environ., 74, 261 (2007). https://doi.org/10.1016/j.apcatb.2007.02.013
  42. B. H. Kim and H. G. Woo, Dehydrocoupling, redistributive coupling, and addition of main group 4 hydrides, Adv. Organomet. Chem., 52, 143 (2005).
  43. K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, Fabrication and impedance tudies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst, J. Power Sources, 164, 33 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.097
  44. G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, and S. Miao, Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells, Carbon, 45, 536 (2007). https://doi.org/10.1016/j.carbon.2006.10.018
  45. Y. Zou, C. Xiang, L. Yang, L. Sun, F. Xu, and Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, J. Hydrogen Energy, 33, 4856 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.061
  46. D. H. Park and J. G. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58 (2002). https://doi.org/10.1007/s00253-002-0972-1
  47. A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. A. Rozendal, and C. J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200 (2006). https://doi.org/10.1021/es0608545
  48. A. Rhoads, H. Beyenal, and Z. Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666 (2005). https://doi.org/10.1021/es048386r
  49. F. Zhao, U. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40, 5193 (2006). https://doi.org/10.1021/es060332p
  50. Z. He and L. T. Angenent, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009 (2006). https://doi.org/10.1002/elan.200603628
  51. E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
  52. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun., 7, 1405 (2005). https://doi.org/10.1016/j.elecom.2005.09.032
  53. P. Clauwaert, K. Rabaey, P. Aelterman, L. de Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete, Biological denitrification in microbial fuel cells, Environ. Sci. Technol., 41, 3354 (2007). https://doi.org/10.1021/es062580r
  54. L. Cindrella and A. M. Kannan, Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions, J. Power Sources, 193, 447 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.002
  55. D. H. Park, S. K. Kim, I. H. Shin, and Y. J. Jeong, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301 (2000). https://doi.org/10.1023/A:1005674107841
  56. B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809 (2004). https://doi.org/10.1021/es0491026
  57. S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162 (2006). https://doi.org/10.1007/s00253-005-0066-y
  58. S. Cheng, H. Liu, and B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 40, 2426 (2006). https://doi.org/10.1021/es051652w
  59. H. Liu, S. Cheng, and B. E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39, 5488 (2005). https://doi.org/10.1021/es050316c
  60. D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483 (2002). https://doi.org/10.1126/science.1066771
  61. K. Rabaey, W. Ossieur, M. Verhaege, and W. Verstraete, Continuous microbial fuel cells convert carbohydratesto electricity, Water Sci. Technol., 52, 515 (2005).
  62. S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, and P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte, Bioresource Technol., 99, 596 (2008). https://doi.org/10.1016/j.biortech.2006.12.026
  63. H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281 (2004). https://doi.org/10.1021/es034923g
  64. H. Liu, S. Cheng, and B. E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658 (2005). https://doi.org/10.1021/es048927c
  65. S. Cheng, H. Liu, and B. E. Logan, Increased performance of single- chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun., 8, 489 (2006). https://doi.org/10.1016/j.elecom.2006.01.010
  66. S. Cheng and B. E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun., 9, 492 (2007). https://doi.org/10.1016/j.elecom.2006.10.023
  67. B. Logan and S. Cheng, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341 (2007). https://doi.org/10.1021/es062644y
  68. J. Niessen, U. Schroder, M. Rosenbaum, and F. Scholz, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun., 6, 571 (2004). https://doi.org/10.1016/j.elecom.2004.04.006
  69. Y. Qiao, S. J. Bao, C. M. Li, X. Q. Cui, Z. S. Lu, and J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells, ACS Nano., 2, 113 (2008). https://doi.org/10.1021/nn700102s
  70. T. Sharma, L. M. Reddy, T. S. Chandra, and S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, J. Hydrogen Energy, 33, 6749 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.112
  71. S. R. Crittenden, C. J. Sund, and J. J. Sumner, Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer, Langmuir, 22, 9473 (2006). https://doi.org/10.1021/la061869j
  72. M. Adachi, T. Shimomura, M. Komatsu, H. Yakuwa, and A. Miya, A novel mediator-polymer-modified anode for microbial fuel cells, Chem. Commun., 17, 2055 (2008).
  73. R. A. Rozendal, H. V. M. Hamelers, and C. J. N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206 (2006). https://doi.org/10.1021/es060387r
  74. C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872 (2008). https://doi.org/10.1002/bit.21821
  75. C. A. Pham, S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, and B. H. Kim, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129 (2003). https://doi.org/10.1016/S0378-1097(03)00354-9
  76. I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Technol., 37, 238 (2005). https://doi.org/10.1016/j.enzmictec.2005.03.006
  77. C. A. Vega and I. Fernandez, Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217 (1987). https://doi.org/10.1016/0302-4598(87)80026-0
  78. D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548 (2003). https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  79. S. A. Lee, Y. Choi, S. Jung, and S. Kim, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans, Bioelectrochemistry, 57, 173 (2002). https://doi.org/10.1016/S1567-5394(02)00115-9
  80. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373 (2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  81. B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, and B. Little, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10, Environ. Sci. Technol., 40, 2629 (2006). https://doi.org/10.1021/es052254w
  82. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098 (2005). https://doi.org/10.1038/nature03661
  83. T. H. Pham, J. K. Jang, I. D. Chang, and B. H. Kim, Improvement of cathode reaction of a mediator less microbial fuel cell, J. Microbiol. Biotechnol., 14, 324 (2004).
  84. K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, Biosci. Bioeng., 106, 528 (2008). https://doi.org/10.1263/jbb.106.528
  85. K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294 (2002). https://doi.org/10.1128/AEM.68.5.2294-2299.2002
  86. B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, and J. Lee, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672 (2004). https://doi.org/10.1007/s00253-003-1412-6
  87. M. E. Hernandez and D. K. Newman, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562 (2001). https://doi.org/10.1007/PL00000796
  88. J. B. McKinlay and J. G. Zeikus, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467 (2004). https://doi.org/10.1128/AEM.70.6.3467-3474.2004
  89. M. J. Cooney, E. Roschi, I. W. Marison, C. Comninellis, and U. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358 (1996). https://doi.org/10.1016/0141-0229(95)00132-8
  90. H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, and I. S. Chang, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically telated to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297 (2001). https://doi.org/10.1006/anae.2001.0399
  91. Y. Han, C. Yu, and H. Liu, A microbial fuel cell as power supply for implantable medical devices, Biosens. Bioelectron, 25, 2156 (2010). https://doi.org/10.1016/j.bios.2010.02.014
  92. R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkmp, and J. N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res., 41, 1984 (2007). https://doi.org/10.1016/j.watres.2007.01.019
  93. H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39, 4317 (2005). https://doi.org/10.1021/es050244p
  94. K. Nath and D. Das, Hydrogen from biomass, Current Sci., 85, 265 (2003).
  95. B. Tartakovsky, M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot, Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode, J. Power Sources, 182, 291 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.062
  96. C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Harvesting energy from the marine sediment water interface, Environ. Sci. Technol., 35, 192 (2001). https://doi.org/10.1021/es001223s
  97. L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Low, K. Piblobello, S. Fertig, and D. R. Lovley, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821 (2002). https://doi.org/10.1038/nbt716
  98. I. S. Chang, H. Moon, J. K. Jang, and B. H. Kim, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856 (2005). https://doi.org/10.1016/j.bios.2004.06.003
  99. B. H. Kim, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator- less microbial fuel cell, Biotechnol. Lett., 25, 541 (2003). https://doi.org/10.1023/A:1022891231369

Cited by

  1. 미생물 연료전지 영속발전 지표개발 vol.23, pp.2, 2015, https://doi.org/10.17137/korrae.2015.23.2.047