References
- B. E. Logan and K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Sci., 337, 686 (2012). https://doi.org/10.1126/science.1217412
- H. Moon, I. S. Chang, and B. H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell, Bioresource Technol., 97, 621 (2006). https://doi.org/10.1016/j.biortech.2005.03.027
- Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochem., 59, 121 (2003). https://doi.org/10.1016/S1567-5394(03)00018-5
- D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 66, 1292 (2000). https://doi.org/10.1128/AEM.66.4.1292-1297.2000
- S. H. Roh, S. W. Lee, K. R. Kim, and S. I. Kim, Electricity generation from dairy wastewater using microbial fuel cell, J. Korean Ind. Eng. Chem., 23, 297 (2012).
- B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Alterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181 (2006). https://doi.org/10.1021/es0605016
- J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator and membrane-less microbial fuel cell, Process Biochem., 39, 1007 (2004). https://doi.org/10.1016/S0032-9592(03)00203-6
- G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Operational parameters affecting the prformannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327 (2003). https://doi.org/10.1016/S0956-5663(02)00110-0
- H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040 (2004). https://doi.org/10.1021/es0499344
- S. Oh, B. Min, and B. E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells, Environ. Sci. Technol., 38, 4900 (2004). https://doi.org/10.1021/es049422p
- Z. W. Du, H. R. Li, and T. Y. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25, 464 (2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
- K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23, 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008
- B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512 (2006). https://doi.org/10.1016/j.tim.2006.10.003
- I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163 (2006).
- D. R. Lovley, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327 (2006). https://doi.org/10.1016/j.copbio.2006.04.006
- B. H. Kim, I. S. Chang, and G. M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol., 76, 485 (2007). https://doi.org/10.1007/s00253-007-1027-4
- D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nat. Rev. Microbiol., 4, 497 (2006). https://doi.org/10.1038/nrmicro1442
- U. Schorder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619 (2007). https://doi.org/10.1039/b703627m
- P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstrate, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Sci. Technol., 41, 7564 (2007). https://doi.org/10.1021/es0709831
- U. Schörder, J. Niebn, and F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42, 2880 (2003). https://doi.org/10.1002/anie.200350918
- Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, Carbon nanotube/ polyaniline composite as anode aterial for microbial fuel cells, J. Power Sources, 170, 79 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.048
- S. I. Kim, J. W. Lee, and S. H. Roh, Performance of polyacrylonitrile- carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells, J. Nanosci. Nanotechnol., 11, 1364 (2011). https://doi.org/10.1166/jnn.2011.3311
- J. Xu, G. P. Sheng, H. W. Luo, W. W. Li, L. F. Wang, and H. Q. Yu, Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817 (2012). https://doi.org/10.1016/j.watres.2011.12.060
- Z. Li, L. Yao, L. Kong, and H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresource Technol., 99, 1650 (2008). https://doi.org/10.1016/j.biortech.2007.04.003
- D. H. Park and J. G. Zeikus, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J. Bacteriol., 181, 2403 (1999).
- S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nat. Biotechnol., 21, 1229 (2003). https://doi.org/10.1038/nbt867
- K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 25, 1531 (2003). https://doi.org/10.1023/A:1025484009367
- B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675 (2005). https://doi.org/10.1016/j.watres.2005.02.002
- G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, and B. F. Thurston, Electron-transfer coupling in microbial fuel cells, J. Chem. Tech. Biotechnol., 34B, 13 (1984).
- K. Rabaey, P. Clauwaert, P. Aelterman, and W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077 (2005). https://doi.org/10.1021/es050986i
- J. R. Kim, S. H. Jung, J. M. Regan, and B. E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresource Technol., 98, 2568 (2007). https://doi.org/10.1016/j.biortech.2006.09.036
- Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40, 5212 (2006). https://doi.org/10.1021/es060394f
- P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388 (2006). https://doi.org/10.1021/es0525511
- Z. He, S. D. Minteer, and L. T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol., 39, 5262 (2005). https://doi.org/10.1021/es0502876
- E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
- S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41, 2915 (2007). https://doi.org/10.1021/es062611i
- K. Rabaey, N. Boon, M. Hofte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401 (2005). https://doi.org/10.1021/es048563o
- R. A. Bullen, T. Arnot, J. B. Lakeman, and F. C. Walsh, Biofuel cells and their development, Biosens. Bioelectron, 21, 2015 (2006). https://doi.org/10.1016/j.bios.2006.01.030
- S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Techol., 40, 364 (2006). https://doi.org/10.1021/es0512071
- S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells, Electrochem. Acta., 53, 598 (2007). https://doi.org/10.1016/j.electacta.2007.07.037
- M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schörder, and F. Scholz, Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, Appl. Catal. B Environ., 74, 261 (2007). https://doi.org/10.1016/j.apcatb.2007.02.013
- B. H. Kim and H. G. Woo, Dehydrocoupling, redistributive coupling, and addition of main group 4 hydrides, Adv. Organomet. Chem., 52, 143 (2005).
- K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, and S. H. Lin, Fabrication and impedance tudies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst, J. Power Sources, 164, 33 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.097
- G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, and S. Miao, Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells, Carbon, 45, 536 (2007). https://doi.org/10.1016/j.carbon.2006.10.018
- Y. Zou, C. Xiang, L. Yang, L. Sun, F. Xu, and Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, J. Hydrogen Energy, 33, 4856 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.061
- D. H. Park and J. G. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol., 59, 58 (2002). https://doi.org/10.1007/s00253-002-0972-1
- A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. A. Rozendal, and C. J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200 (2006). https://doi.org/10.1021/es0608545
- A. Rhoads, H. Beyenal, and Z. Lewandowski, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666 (2005). https://doi.org/10.1021/es048386r
- F. Zhao, U. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40, 5193 (2006). https://doi.org/10.1021/es060332p
- Z. He and L. T. Angenent, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009 (2006). https://doi.org/10.1002/elan.200603628
- E. H. Yu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
- F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann, Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun., 7, 1405 (2005). https://doi.org/10.1016/j.elecom.2005.09.032
- P. Clauwaert, K. Rabaey, P. Aelterman, L. de Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete, Biological denitrification in microbial fuel cells, Environ. Sci. Technol., 41, 3354 (2007). https://doi.org/10.1021/es062580r
- L. Cindrella and A. M. Kannan, Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions, J. Power Sources, 193, 447 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.002
- D. H. Park, S. K. Kim, I. H. Shin, and Y. J. Jeong, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 22, 1301 (2000). https://doi.org/10.1023/A:1005674107841
- B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol., 38, 5809 (2004). https://doi.org/10.1021/es0491026
- S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162 (2006). https://doi.org/10.1007/s00253-005-0066-y
- S. Cheng, H. Liu, and B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 40, 2426 (2006). https://doi.org/10.1021/es051652w
- H. Liu, S. Cheng, and B. E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39, 5488 (2005). https://doi.org/10.1021/es050316c
- D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483 (2002). https://doi.org/10.1126/science.1066771
- K. Rabaey, W. Ossieur, M. Verhaege, and W. Verstraete, Continuous microbial fuel cells convert carbohydratesto electricity, Water Sci. Technol., 52, 515 (2005).
- S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, and P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte, Bioresource Technol., 99, 596 (2008). https://doi.org/10.1016/j.biortech.2006.12.026
- H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281 (2004). https://doi.org/10.1021/es034923g
- H. Liu, S. Cheng, and B. E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 658 (2005). https://doi.org/10.1021/es048927c
- S. Cheng, H. Liu, and B. E. Logan, Increased performance of single- chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun., 8, 489 (2006). https://doi.org/10.1016/j.elecom.2006.01.010
- S. Cheng and B. E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun., 9, 492 (2007). https://doi.org/10.1016/j.elecom.2006.10.023
- B. Logan and S. Cheng, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341 (2007). https://doi.org/10.1021/es062644y
- J. Niessen, U. Schroder, M. Rosenbaum, and F. Scholz, Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells, Electrochem. Commun., 6, 571 (2004). https://doi.org/10.1016/j.elecom.2004.04.006
- Y. Qiao, S. J. Bao, C. M. Li, X. Q. Cui, Z. S. Lu, and J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells, ACS Nano., 2, 113 (2008). https://doi.org/10.1021/nn700102s
- T. Sharma, L. M. Reddy, T. S. Chandra, and S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, J. Hydrogen Energy, 33, 6749 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.112
- S. R. Crittenden, C. J. Sund, and J. J. Sumner, Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer, Langmuir, 22, 9473 (2006). https://doi.org/10.1021/la061869j
- M. Adachi, T. Shimomura, M. Komatsu, H. Yakuwa, and A. Miya, A novel mediator-polymer-modified anode for microbial fuel cells, Chem. Commun., 17, 2055 (2008).
- R. A. Rozendal, H. V. M. Hamelers, and C. J. N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206 (2006). https://doi.org/10.1021/es060387r
- C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872 (2008). https://doi.org/10.1002/bit.21821
- C. A. Pham, S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, and B. H. Kim, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiol. Lett., 223, 129 (2003). https://doi.org/10.1016/S0378-1097(03)00354-9
- I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme Microb. Technol., 37, 238 (2005). https://doi.org/10.1016/j.enzmictec.2005.03.006
- C. A. Vega and I. Fernandez, Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens, Bioelectrochem. Bioenerg., 17, 217 (1987). https://doi.org/10.1016/0302-4598(87)80026-0
- D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548 (2003). https://doi.org/10.1128/AEM.69.3.1548-1555.2003
- S. A. Lee, Y. Choi, S. Jung, and S. Kim, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans, Bioelectrochemistry, 57, 173 (2002). https://doi.org/10.1016/S1567-5394(02)00115-9
- K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol., 70, 5373 (2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
- B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, and B. Little, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10, Environ. Sci. Technol., 40, 2629 (2006). https://doi.org/10.1021/es052254w
- G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098 (2005). https://doi.org/10.1038/nature03661
- T. H. Pham, J. K. Jang, I. D. Chang, and B. H. Kim, Improvement of cathode reaction of a mediator less microbial fuel cell, J. Microbiol. Biotechnol., 14, 324 (2004).
- K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, Biosci. Bioeng., 106, 528 (2008). https://doi.org/10.1263/jbb.106.528
- K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68, 2294 (2002). https://doi.org/10.1128/AEM.68.5.2294-2299.2002
- B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, and J. Lee, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 63, 672 (2004). https://doi.org/10.1007/s00253-003-1412-6
- M. E. Hernandez and D. K. Newman, Extracellular electron transfer, Cell. Mol. Life Sci., 58, 1562 (2001). https://doi.org/10.1007/PL00000796
- J. B. McKinlay and J. G. Zeikus, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467 (2004). https://doi.org/10.1128/AEM.70.6.3467-3474.2004
- M. J. Cooney, E. Roschi, I. W. Marison, C. Comninellis, and U. Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol., 18, 358 (1996). https://doi.org/10.1016/0141-0229(95)00132-8
- H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, and I. S. Chang, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically telated to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297 (2001). https://doi.org/10.1006/anae.2001.0399
- Y. Han, C. Yu, and H. Liu, A microbial fuel cell as power supply for implantable medical devices, Biosens. Bioelectron, 25, 2156 (2010). https://doi.org/10.1016/j.bios.2010.02.014
- R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkmp, and J. N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res., 41, 1984 (2007). https://doi.org/10.1016/j.watres.2007.01.019
- H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39, 4317 (2005). https://doi.org/10.1021/es050244p
- K. Nath and D. Das, Hydrogen from biomass, Current Sci., 85, 265 (2003).
- B. Tartakovsky, M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot, Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode, J. Power Sources, 182, 291 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.062
- C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Harvesting energy from the marine sediment water interface, Environ. Sci. Technol., 35, 192 (2001). https://doi.org/10.1021/es001223s
- L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Low, K. Piblobello, S. Fertig, and D. R. Lovley, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821 (2002). https://doi.org/10.1038/nbt716
- I. S. Chang, H. Moon, J. K. Jang, and B. H. Kim, Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens. Bioelectron., 20, 1856 (2005). https://doi.org/10.1016/j.bios.2004.06.003
- B. H. Kim, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator- less microbial fuel cell, Biotechnol. Lett., 25, 541 (2003). https://doi.org/10.1023/A:1022891231369
Cited by
- 미생물 연료전지 영속발전 지표개발 vol.23, pp.2, 2015, https://doi.org/10.17137/korrae.2015.23.2.047