DOI QR코드

DOI QR Code

Review : Ionic Liquids as Green Solvent

리뷰 : 녹색용매로서의 이온성액체 기술동향

  • 이준웅 (한국과학기술정보연구원)
  • Received : 2013.05.10
  • Accepted : 2013.08.16
  • Published : 2013.10.05

Abstract

Ionic liquids(ILs) have been the most investigated chemicals among green solvents including water, glycerol, supercritical carbon dioxdie($scCO_2$). ILs are attracting organic as well as inorganic chemicals because most ionic liquids' vapor pressures are very low so that ILs are liquids phase at ambient conditions. ILs are composed of various anions and cations, thus chemists can design functionalized solvents and/or catalysts that can be used in specific synthetic reactions by means of combinations of different ions. Many scientists believe ILs being green materials because of its low vapor pressure as well as the flexibility in controlling the chemical and physical properties. In this review the author describes recent development of ILs focused on imidazolium and pyridinium ILs which are being most investigated presently. In order to apply this materials in industrial level, the toxicity matter must be resolved first. In this regard, the author describes recent research trend regarding environmental effects by ILs as well as some meaningful results as well.

Keywords

References

  1. Jason P. Hallett and Tom Welton, Chem. Rev., 111, 3508, 2011. https://doi.org/10.1021/cr1003248
  2. 이준웅, 한국군사과학기술학회지, 13, 1153, 2010.
  3. 이준웅, 한국군사과학기술학회지, 14, 246, 2011.
  4. 이준웅, 한국군사과학기술학회지, 15, 475, 2012.
  5. Burrel, A. K. et al., Green Chem., 9, 449, 2007. https://doi.org/10.1039/b615950h
  6. Scurto, A. M. and Schleicher, J. C., Green Chem. 11, 694, 2009. https://doi.org/10.1039/b808364a
  7. Kagimoto, J. et al., Chem. Lett., 37, 1026, 2008. https://doi.org/10.1246/cl.2008.1026
  8. Fukumoto, K. et al., J. Am. Chem. Soc., 127, 2398, 2005. https://doi.org/10.1021/ja043451i
  9. Cassol, C. C. et al., Adv. Synth. Catal., 348, 243, 2006. https://doi.org/10.1002/adsc.200505295
  10. Maase, M. and Massonne, K., U.S. Pat. US 2006/0149074 A1.
  11. Linder, T. and Sundermeyer, J., Chem. Commun. 2914, 2009.
  12. Cole, A. C. et al., J. Am. Chem. Soc., 124, 5962, 2002. https://doi.org/10.1021/ja026290w
  13. Zhang, S. et al., J. Phys. Chem. Ref. Data, 35, 1475, 2006. https://doi.org/10.1063/1.2204959
  14. Varnek, A. et al., Chem. Inf. Model, 47, 1111, 2007. https://doi.org/10.1021/ci600493x
  15. Yoshizawa, M.et al., J. Am. Chem. Soc., 125, 15411, 2003. https://doi.org/10.1021/ja035783d
  16. Belieres, J.-P. et al., J. Phys. Chem. B, 111, 4926, 2007. https://doi.org/10.1021/jp067589u
  17. Luo, H. et al., J. Phys., Chem. B, 113, 4181, 2009. https://doi.org/10.1021/jp901312d
  18. Luo, H. et al., J. Phys., Chem. B, 113, 4181, 2009. https://doi.org/10.1021/jp901312d
  19. Rinaldi R. and Schüth, F., Energy Environ. Sci., 2, 610, 2009. https://doi.org/10.1039/b902668a
  20. Zhang, Q. et al., Green Chem., 13, 2619, 2011. https://doi.org/10.1039/c1gc15334j
  21. Rinaldi, R. and Schüth, F., ChemSusChem, 2, 1096, 2009. https://doi.org/10.1002/cssc.200900188
  22. Xiang, Q. et al., Appl. Biochem. Biotechnol., 107, 505, 2003. https://doi.org/10.1385/ABAB:107:1-3:505
  23. Suganuma, S. K. et al., J. Am. Chem. Soc., 130, 12787, 2008. https://doi.org/10.1021/ja803983h
  24. Li C. and Zhao, Z. K., Adv. Synth. Catal., 349, 1847, 2007. https://doi.org/10.1002/adsc.200700259
  25. Vanoye, L. et al., Green Chem., 11, 390, 2009. https://doi.org/10.1039/b817882h
  26. Tao, F. et al., ChemSusChem, 3, 1298, 2010. https://doi.org/10.1002/cssc.201000184
  27. Ignatyev, I. A. et al., Green Chem., 12, 1790, 2010. https://doi.org/10.1039/c0gc00192a
  28. Zhao, H. et al., Science, 316, 1597, 2007. https://doi.org/10.1126/science.1141199
  29. Kamiya, N. et al., Biotechnol. Lett., 30, 1037, 2008. https://doi.org/10.1007/s10529-008-9638-0
  30. Lynd, L. R., Biotechnol. Bioeng., 105, 1, 2010. https://doi.org/10.1002/bit.22603
  31. Lee, S. H. et al., Biotechnol. Bioeng., 102, 1368, 2009. https://doi.org/10.1002/bit.22179
  32. Le, Z. G. et al., J. Heterocycl. Chem., 43, 1123, 2006. https://doi.org/10.1002/jhet.5570430447
  33. Aksin O. and Krause, N., Adv. Synth. Catal., 350, 1106, 2008. https://doi.org/10.1002/adsc.200800050
  34. Gu, Y. L. et al., Adv. Synth. Catal., 347, 512, 2005. https://doi.org/10.1002/adsc.200404316
  35. Forsyth, S. A. et al., Org. Process Res. Dev., 10, 94, 2006. https://doi.org/10.1021/op050172m
  36. Weng, J. Y. et al., Green Chem., 8, 96, 2006. https://doi.org/10.1039/B508325G
  37. Deng, Y. Q. et al., US Patent, No. US-2011-0021810-A1, 2011.
  38. Weitkamp J. and Traa, Y., Catal. Today, 49, 193, 1999. https://doi.org/10.1016/S0920-5861(98)00424-6
  39. Ignatyev, I. A. et al., ChemSusChem, 3, 91, 2010. https://doi.org/10.1002/cssc.200900213
  40. Boon, J. A. et al., J. Org. Chem., 51, 480, 1986. https://doi.org/10.1021/jo00354a013
  41. Huang, C. et al., Appl. Catal., A, 277, 41, 2004. https://doi.org/10.1016/j.apcata.2004.08.019
  42. Song, C. et al., Chem. Commun., 1695, 2000.
  43. Ladnak, V. et al., Adv. Synth. Catal., 349, 719, 2007. https://doi.org/10.1002/adsc.200600414
  44. Freudenmann, D. et al., Angew. Chem. Int. Ed,. 50, 11050, 2011. https://doi.org/10.1002/anie.201100904
  45. Shamsipur, M. et al., J. Mol. Liq. 157, 43, 2010. https://doi.org/10.1016/j.molliq.2010.08.005
  46. Okrut, A. C. and Feldmann, Z. Anorg. Allg. Chem. 633, 2144, 2007. https://doi.org/10.1002/zaac.200700291
  47. Sun, D. and Hughbanks, T., Inorg. Chem. 39, 1964, 2000. https://doi.org/10.1021/ic9913785
  48. Sakamoto, H. et al., Inorg. Chem. 45, 4578, 2006. https://doi.org/10.1021/ic060428k
  49. Ahmed, E. et al., Z. Anorg. Allg. Chem. 635, 297, 2009. https://doi.org/10.1002/zaac.200800302
  50. Guloy, A. M. et al., Eur. J. Inorg. Chem. 2455, 2009.
  51. Boros, E. et al., Chem. Commun. 46, 716, 2010. https://doi.org/10.1039/B910469K
  52. Cameron, T. S. et al., Chem. Eur. J. 8, 3386, 2002. https://doi.org/10.1002/1521-3765(20020802)8:15<3386::AID-CHEM3386>3.0.CO;2-9
  53. Wong, M. W. et al., Inorg. Chem., 44, 8908, 2005. https://doi.org/10.1021/ic050332a
  54. G. Santiso-QuiCones, G. et., Angew. Chem. Int. Ed., 48, 1133, 2009. https://doi.org/10.1002/anie.200804021
  55. Ahmed, E. et al., Z. Anorg. Allg. Chem. 636, 2602, 2010. https://doi.org/10.1002/zaac.201000242
  56. Kim, D. W., C. E. Song and Chi, D. Y., J. Am. Chem. Soc. 124, 10278, 2002. https://doi.org/10.1021/ja026242b
  57. Wolff, M. and Feldmann, C., Z. Anorg. Allg. Chem. 636, 1787, 2010. https://doi.org/10.1002/zaac.201000072
  58. M. Wolff, et al., Angew. Chem. Int. Ed., 50, 4970, 2011. https://doi.org/10.1002/anie.201004804
  59. Lu, J. Y., Coord. Chem. Rev. 246, 327, 2003. https://doi.org/10.1016/j.cct.2003.08.005
  60. Cooper, E. R. et al., Nature, 430, 1012, 2004. https://doi.org/10.1038/nature02860
  61. Dybtsev, D. et al., Chem. Commun., 1594, 2004.
  62. Jin, K. et al., Chem. Commun., 2872, 2002.
  63. Liao, J. H. et al., Cryst. Growth Des., 6, 1062, 2006. https://doi.org/10.1021/cg0504197
  64. Xu, L. et al., Chem. Commun., 3431, 2009.
  65. Byrne, P. J., Dalton Trans. 795, 2005.
  66. Wei, Y. et al., Angew. Chem. Int. Ed., 49, 5367, 2010. https://doi.org/10.1002/anie.201000320
  67. http://events.dechema.de/batil2.html; BATIL2, 2010 http://www.rsc.org/Publishing/Journals/gc/News/2010/BATIL2_2009.asp.
  68. http://www.il-eco.uft.uni-bremen.de.
  69. Davis, J. H. et al., Tetrahedron Lett., 39, 8955, 1998. https://doi.org/10.1016/S0040-4039(98)02070-X
  70. Pernak, J. et al., Eur. J. Med. Chem., 36, 313, 2001. https://doi.org/10.1016/S0223-5234(01)01226-0
  71. Petkovic, M., et al., Chem. Soc. Rev., 40, 1383, 2011. https://doi.org/10.1039/C004968A
  72. Yang, Z. H. Food Technol. Biotechnol., 47, 62, 2009.
  73. Petkovic, M. et al., Green Chem., 11, 889, 2009. https://doi.org/10.1039/b823225c
  74. Ignatyev, I. A. et al., ChemSusChem, 3, 91, 2010. https://doi.org/10.1002/cssc.200900213
  75. Fayet C. and Gelas, J., Carbohydr. Res., 122, 59, 1983. https://doi.org/10.1016/0008-6215(83)88406-7
  76. Lansalot-Matras C. et al., Catal. Commun., 4, 517, 2003. https://doi.org/10.1016/S1566-7367(03)00133-X
  77. Cho, C. W. et al., Green Chem., 10, 67, 2008. https://doi.org/10.1039/B705520J
  78. Stolte, S. et al., Green Chem., 9, 1170, 2007. https://doi.org/10.1039/b711119c
  79. Pernak, J. Green Chem., 5, 52, 2003. https://doi.org/10.1039/b207543c
  80. Wells, A. S. and Coombe, V. T., Org. Process Res. Dev., 10, 794, 2006. https://doi.org/10.1021/op060048i
  81. Jastorff, B. et al., Green Chem., 7, 362, 2005. https://doi.org/10.1039/b418518h
  82. Pernak J. and Branicka, M., J. Surfactants Deterg., 6, 119, 2003. https://doi.org/10.1007/s11743-003-0254-5
  83. Hough-Troutman, W. L. et al., New J. Chem., 33, 26, 2009. https://doi.org/10.1039/B813213P
  84. Docherty K. M. and Kulpa, C. F., Green Chem., 7, 185, 2005. https://doi.org/10.1039/b419172b
  85. Matzke, M. et al., Chemosphere, 74, 568, 2009. https://doi.org/10.1016/j.chemosphere.2008.09.049
  86. Mrozik, W. et al., J. Soils Sediments, 9, 237, 2009. https://doi.org/10.1007/s11368-009-0057-1
  87. Couling, D. J. et al., Green Chem., 8, 82, 2006. https://doi.org/10.1039/B511333D
  88. Torrecilla, J. S. et al., Green Chem., 12, 123, 2010. https://doi.org/10.1039/B919806G
  89. Palomar, J. et al., Phys. Chem. Chem. Phys., 12, 1991, 2010. https://doi.org/10.1039/b920651p
  90. Gao, H. et al. Chem. Rev. 111, 7377, 2011. https://doi.org/10.1021/cr200039c
  91. Schmidt, M. W. et al. J. Phys. Chem. A., 109, 7285, 2005. https://doi.org/10.1021/jp058149q
  92. Wang, R. et al., Inorg. Chem. 46, 932, 2007. https://doi.org/10.1021/ic0619198
  93. Jiang, W. et al., J. Phys. Chem. B, 112, 3121, 2008. https://doi.org/10.1021/jp710653g
  94. Fox, D. M. et al., Ind. Eng. Res., 47, 6327, 2008. https://doi.org/10.1021/ie800665u
  95. Carlson, P. J. et al., J. Phys. Chem. B., 116, 503, 2012. https://doi.org/10.1021/jp207840q
  96. Pogodina, N. V. et al., J. Phys. Chem. Lett. 2, 2571, 2011. https://doi.org/10.1021/jz201175v