DOI QR코드

DOI QR Code

자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가

Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars

  • 홍진호 (중앙대학교 기계공학과 대학원) ;
  • 유성환 (중앙대학교 기계공학과 대학원) ;
  • 장승환 (중앙대학교 기계공학과 대학원)
  • 투고 : 2013.11.23
  • 심사 : 2013.12.10
  • 발행 : 2013.12.31

초록

본 연구에서는 차량의 승차감 향상을 위해 기존의 알루미늄 차량용 휠의 성능을 개선하고자 복합재료-알루미늄 하이브리드 휠을 제안하고 시제품을 제작하여 평가하였다. 유한요소해석 기법을 통해 알루미늄과 복합재료의 접착부에 대한 접착 길이와 접착 두께를 결정하고, 자동조심 및 접착 지그 역할을 할 수 있는 홈과 돌기 구조를 적용하였다. 차량용 복합재료-알루미늄 하이브리드 휠의 성능평가를 위해 다양한 실험을 유한요소해석을 통해 구현하고 안전성을 검토하였다. 복합재료 림 부의 성형을 위한 금형을 설계하고 진공백 성형방법으로 제작한 후 알루미늄 부와 접착을 하여 시제품을 완성하였다. 진동실험 결과, 동일한 형상의 알루미늄 휠보다 10% 가벼운 복합재료-알루미늄 하이브리드 휠의 경우 고유진동수가 16% 증가하였고, 감쇠능이 32% 증가하였다.

In this paper, a carbon fiber/epoxy composite-aluminum hybrid wheel for passenger cars was suggested for better performance and a prototype was fabricated and tested. Adhesive bonding between aluminum part and a composite rim part was used, and the bonding length and thickness were determined by finite element analysis. For self alignment and the function of bonding jig the special structure with a groove and a protrusion was applied. To evaluate the performance of the hybrid wheel various FE analyses were carried out. Inner and outer molds were prepared for the composite rim part and the thermoformed composite part was bonded to the aluminum part. Vibration tests revealed that the hybrid wheel had 16% higher resonance frequency and 32% higher damping capacity with 10% weight reduction.

키워드

참고문헌

  1. Kim, K.S., Bea, K.M., Oh, S.Y., Seo, M.K., Kang, C.G., and Park, S.J., "Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles," Elastomers and Composites, Vol. 47, No. 1, 2012, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Kang, W.J., and Kim, S.T., "High Strain Rate Tensile Test of Composite Material for Automotive Front End Module Carrier," The Journal of the Korean Society for Composite Materials, Vol. 24, No. 3, 2011, pp. 20-24.
  3. Lee, M.S., Kim, H.H., and Kang, C.G., "Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties," The Journal of the Korean Society for Composite Materials, Vol. 26, No. 5, 2013, pp. 295-302. https://doi.org/10.7234/composres.2013.26.5.295
  4. Deepak, S.V., Naresh, C., and Hussiain, S.A., "Modelling and Analysis of Alloy Wheel for Four Wheeler Vehicle," International Journal of Mechanical Engineering and Robotics Research, Vol. 1, No. 3, 2012, pp. 72-80.
  5. Kim, B.S., "A Study on Vibration Characteristics of Automobile Al-alloy Wheel," Transactions of the Korean Society of Machine Tool Engineers, Vol. 14, No. 3, 2005, pp. 122-127.
  6. Kim, P.J., and Lee, D.G., "Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM," Proceeding of Conference on KSPE, Jeju, Korea, Vol. 3, No. 54, 2003, pp. 54-57.
  7. Yoo, S.H., Lim, T.S., Kim, H.J., Lee, Y.S., and Chang, S.H., "The Development of Composite-aluminum Hybrid Vehicle Wheel," Proceeding of conference on ACCM7, Taipei, Taiwan, 15-18 November 2010.
  8. Yoo, S.H., Park, S.W., and Chang, S.H., "The Design And Fabrication of a Composite-aluminum Hybrid Vehicle Wheel," Proceeding of Conference on ICCS16, Porto, Portugal, 2011.
  9. Yoo, S.H., and Chang, S.H., "Design and Fabrication of an Aluminum- composite Hybrid Vehicle Wheel Using Adhesive Bonding Method for Weight Reduction and Ride Comport," Proceeding of Conference on ISGMA2011, Seoul, Korea, 5-7 October, 2011.
  10. Kelly, G., "Quasi-static Strength and Fatigue Life of Hybrid (bonded/bolted) Composite Single-lap Joints," Composite Structures, Vol. 72, No. 1, 2006, pp. 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002
  11. Kim, Y.H., Park, S.K., Kim, D.O., Ryu, Y.M., and Cheon, S.S., "A Study on the Shear Impact Characteristics of Adhesively Bonded Tubular Joints," The Journal of the Korean Society for Composite Materials, Vol. 25, No. 1, 2012, pp. 14-18. https://doi.org/10.7234/kscm.2012.25.1.014

피인용 문헌

  1. Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property vol.116, 2018, https://doi.org/10.1016/j.advengsoft.2017.11.004
  2. Lightweight design of automotive wheel made of long glass fiber reinforced thermoplastic vol.230, pp.10, 2016, https://doi.org/10.1177/0954406215583081
  3. Experimental Study on the Structural Integrity of Type IV Hydrogen Pressure Vessels Experienced Impact Loadings vol.29, pp.2, 2016, https://doi.org/10.7234/composres.2016.29.2.060
  4. Reducing defects in composite monocoque frames vol.47, pp.1, 2013, https://doi.org/10.5937/fmet1901048f
  5. Injection Molding of Carbon Fiber Composite Automotive Wheel vol.20, pp.12, 2013, https://doi.org/10.1007/s12221-019-9636-y
  6. Analysis on effect of injection residual stress on impact resistance of composite wheel made of long glass fiber reinforced thermoplastic vol.26, pp.5, 2013, https://doi.org/10.1080/13588265.2020.1757583