DOI QR코드

DOI QR Code

A Study on the Sinterning of the Carbon Nanotube/Metal Composites for the Heat Transfer Enhancement

열전달 촉진을 위한 탄소나노튜브(CNT)/금속 복합체 소결 코팅에 관한 연구

  • 정희여 (전북대학교 기계설계공학부 대학원) ;
  • 김민수 (전북대학교 기계설계공학부) ;
  • 박찬우 (전북대학교 기계설계공학부)
  • Received : 2013.09.17
  • Accepted : 2013.12.26
  • Published : 2013.12.31

Abstract

The coating of metal surface with carbon nanotubes (CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The MWCNT/copper composite powder was made by the attrition ball milling, which has been coated on the copper wafer by electrostatic powder coating and sintered with electric furnace. In this paper, experiments were performed to assess the characterization and comparison of CNT before and after sinterning and the morphology changes of the CNT/Cu-coated surface. The samples were examined by the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX) and raman spectroscopy. To verify the heat transfer enhancement, boiling heat transfer tests were performed.

냉매의 비등이나 응축같은 열전달 향상을 위하여 금속 표면위에 탄소나노튜브(CNT)를 코팅하는 것을 연구하였다. 다중벽 탄소나노튜브/구리 복합소재는 어트리션 볼밀에 의해서 제작되었으며, 정전 도장 장치로 복합 분말을 구리 기판위에 코팅한 후 전기로에서 소결하였다. 본 논문에서는 CNT/Cu 코팅 표면의 분석 및 소결전후의 탄소나노튜브의 변화를 파악하기 위하여 샘플들을 주사전자현미경, EDAX, 라만분광법에 의해 분석하였다. 아울러 열전달 촉진은 비등열전달로 확인하였다.

Keywords

References

  1. Zhang, X.F., Zhang, X.B., Tendeloo, G.V., Amelinckx, S., Beeck, M., and Landuyt, J.V., "Carbon Nano-tubes; Their Formation Process and Observation by Electron Microscopy," Journal of Crystal Growth, Vol. 130, Issues 3-4, June 1993, pp. 368-382. https://doi.org/10.1016/0022-0248(93)90522-X
  2. Pipes, R.B., and Hubert, P., "Helical Carbon Nanotube Arraysmechanical Properties," Composites Science and Technology, Vol. 62, 2002, pp. 419-428. https://doi.org/10.1016/S0266-3538(02)00002-7
  3. Delmotee, J.S., and Rubio, A., "M Echanical Properties of Carbon Nanotubes: A Fiber Digest for Beginners," Carbon, Vol. 40, 2002, pp. 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
  4. Kwon, H.S., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A., "Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites," Carbon, Vol. 47, 2009, pp. 570-577. https://doi.org/10.1016/j.carbon.2008.10.041
  5. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Physical Review Letters, Vol. 87, 2001, pp. 1-4. https://doi.org/10.1103/PhysRevLett.87.1
  6. Ujereh, S., Fisher, T., and Mudawar, I., "Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling," International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 4023-4038. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.030
  7. Khanikar, V., Mudawar, I., and Fisher, T., "Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-channel," International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 3805-3817. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.007
  8. He, X.Q., Kitipornchai, S., and Liew, K.M., "Buckling Analysis of Multi-walled Carbon Nanotubes: A Continuum Model Accounting for Van Der Waals Interaction," Journal of the Mechanics and Physics of Solids, Vol. 53, Issue 2, February 2005, pp. 303-326. https://doi.org/10.1016/j.jmps.2004.08.003
  9. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., "Chemical Oxidation of Multiwalled Carbon Nanotubes," Carbon, Vol. 46, 2008, pp. 833-840. https://doi.org/10.1016/j.carbon.2008.02.012
  10. Yang, C.-Y., and Liu, C.-F., "Effect of Coating Layer Thickness for Boiling Heat Transfer on Micro Porous Coated Surface in Confined and Unconfined Spaces," Experimental Thermal and Fluid Science, Vol. 47, 2013, pp. 40-47. https://doi.org/10.1016/j.expthermflusci.2013.01.001
  11. Yang, C.-Y., and Fan, C.-F., "Pool Boiling of Refrigerants R- 134a and R-404A on Porous and Structured Surface Tubes - Part II, Heat Transfer Performance," Journal of Enhanced Heat Transfer, Vol. 13, 2006, pp. 65-84. https://doi.org/10.1615/JEnhHeatTransf.v13.i1.50
  12. Fan, C.-F., and Yang, C.-Y., "Pool Boiling of Refrigerants R-134a and R-404A on Porous and Structured Tubes-Part I, Visualization of Bubble Dynamics," Journal of Enhanced Heat Transfer, Vol. 13, 2006, pp. 85-97. https://doi.org/10.1615/JEnhHeatTransf.v13.i1.60
  13. Cieslinski, J.T., "Nucleate Pool Boiling on Porous Metallic Coatings," Experimental Thermal and Fluid Science, Vol. 25, 2002, pp. 557-564. https://doi.org/10.1016/S0894-1777(01)00105-4
  14. El-Genk, M.S., and Ali, A.F., "Enhanced Nucleate Boiling on Copper Micro-porous Surfaces," International Journal of Multiphase Flow, Vol. 36, 2010, pp. 780-792. https://doi.org/10.1016/j.ijmultiphaseflow.2010.06.003
  15. Edward Joshua T. Pialago, Kwon, O.K., and Park, C.W., "Nucleate Boiling Heat Transfer of R134a on Cold Sprayed CNT-Cu Composite Coatings", Applied Thermal Engineering, Vol. 56, Issues 1-2, July 2013, pp. 112-119. https://doi.org/10.1016/j.applthermaleng.2013.03.046