DOI QR코드

DOI QR Code

Charge-Directed Peptide Backbone Dissociations of o-TEMPO-Bz-C(O)-Peptides

  • Received : 2013.12.01
  • Accepted : 2013.12.02
  • Published : 2013.12.30

Abstract

In the present study, we report that the charge-directed (assisted) peptide dissociation products, such as b- and y-type peptide backbone fragments, were the major products in MS/MS and $MS^3$ applications of some o-TEMPO-Bz-C(O)-peptide ions, while radical-driven dissociation products, such as a/x and c/z-type fragments, were previously shown to be the major products in the free radical initiated peptide sequencing mass spectrometry (FRIPS MS). Those o-TEMPO-Bz-C(O)-peptides share a common feature in their sequences, that is, the peptides do not include an arginine residue that has the highest proton affinity among free amino acids. The appearance of b- and y-type fragments as major products in FRIPS MS can be understood in terms of the so-called "mobile-proton model". When the proton is highly mobilized by the absence of arginine, the chare-directed peptide dissociation pathways appear to be more competitive than the radical-driven dissociation pathways, in our FRIPS experiments.

Keywords

References

  1. Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998, 120, 3265. https://doi.org/10.1021/ja973478k
  2. Oh, H. B.; Breuker, K.; Sze, S. K.; Ying, G.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA, 2002, 99, 15863. https://doi.org/10.1073/pnas.212643599
  3. Zubarev, R. A, Mass Spectrom. Rev. 2003, 22, 57. https://doi.org/10.1002/mas.10042
  4. Leymarie, N.; Costello, C. E.; O'Connor, P. B. J. Am. Chem. Soc. 2003, 125, 8949. https://doi.org/10.1021/ja028831n
  5. Cooper, H. J.; Hakansson, K.; Marshall, A. G. Mass Spectrom. Rev. 2005, 24, 201. https://doi.org/10.1002/mas.20014
  6. Fung, Y. M. E.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2005, 16, 1523. https://doi.org/10.1016/j.jasms.2005.05.001
  7. Oh, H. B.; McLafferty, F. W. Bull. Korean Chem. Soc. 2006, 27, 389. https://doi.org/10.5012/bkcs.2006.27.3.389
  8. Lee, S. Y.; Han, S. Y.; Lee, T. G.; Lee, D. H.; Chung, G. S.; Oh, H. B. J. Am. Soc. Mass Spectrom. 2006, 17, 536. https://doi.org/10.1016/j.jasms.2005.12.004
  9. Yim, Y. H.; Kim, B. J.; Ahn, S. H.; So, H. Y.; Lee, S. Y.; Oh, H. B. Rapid Commun Mass Spectrom. 2006, 20, 1918. https://doi.org/10.1002/rcm.2533
  10. Lee, S. Y.; Chung, G. S.; Kim, J. D.; Oh, H. B. Rapid Commun Mass Spectrom. 2006, 20, 3167. https://doi.org/10.1002/rcm.2708
  11. Chen, X.; Tureeek, F. J. Am. Chem. Soc. 2006, 128, 12520. https://doi.org/10.1021/ja063676o
  12. Lee, S. Y.; Park, S. J.; Ahn, S. H.; Oh, H. B. Int. J. Mass Spectrom. 2009, 279, 47. https://doi.org/10.1016/j.ijms.2008.10.008
  13. Hamidane, H. B.; Chiappe, D.; Hartmer, R.; Vorobyev, A.; Moniatte, M.; Tsybin, Y. O. J. Am. Soc. Mass Spectrom. 2009, 20, 567. https://doi.org/10.1016/j.jasms.2008.11.016
  14. Kaczorowska, M. A.; Hotze, A. C. G.; Hannon, M. J.; Cooper, H. J. J. Am. Soc. Mass Spectrom. 2010, 21, 300. https://doi.org/10.1016/j.jasms.2009.10.018
  15. Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci. USA, 2004, 101, 9528. https://doi.org/10.1073/pnas.0402700101
  16. Chu, I. K.; Rodriguez, C. F.; Lau, T. C.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2000, 104, :3393. https://doi.org/10.1021/jp994487d
  17. Barlow, C. K.; McFadyen, W. D.; O'Hair, R. A. J. J. Am. Chem. Soc. 2005, 127, 6109. https://doi.org/10.1021/ja043088f
  18. Chu, I. K.; Zhao, J.; Xu, M.; Siu, S. O.; Hopkinson, A. C.; Siu, K. W. M. J. Am. Chem. Soc. 2008, 130, :7862. https://doi.org/10.1021/ja801108j
  19. Chu, I. K.; Laskin, J. Eur. J. Mass Spectrom. 2011, 17, 543. https://doi.org/10.1255/ejms.1156
  20. Sun, Q.; Nelson, H.; Ly, T.; Stoltz, B. M.; Julian, R. R. J. Proteome Res. 2009, 8, 958. https://doi.org/10.1021/pr800592t
  21. Masterson, D. S.; Yin, H.; Chacon, A.; Hachey, D. L.; Norris, J. L.; Porter, N. A. J. Am. Chem. Soc. 2004, 126, 720. https://doi.org/10.1021/ja038615u
  22. Hodyss, R.; Cox, H. A.; Beauchamp, J. L. J. Am. Chem. Soc. 2005, 127, 12436. https://doi.org/10.1021/ja052042z
  23. Lee, M. H.; Kang, M. H.; Moon, B. J.; Oh, H. B. Analyst, 2009, 134, 1706. https://doi.org/10.1039/b904115j
  24. Lee, M. H.; Lee, Y. J.; Kang, M. H.; Park, H. Y.; Seong, Y. M.; Sung, B. J.; Moon, B. J.; Oh, H. B. J. Mass Spectrom. 2011, 46, 830. https://doi.org/10.1002/jms.1955
  25. Lee, J. H.; Park, H. Y.; Kwon, H. S.; Kwon, K. M.; Jeon, A. R.; Kim, H. I.; Sung, B. J.; Moon, B. J.; Oh, H. B. Anal. Chem. 2013, 85, 7044. https://doi.org/10.1021/ac303517h
  26. Yalcin, T.; Khouw, C. Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. J. Am. Soc. Mass Spectrom. 1995, 6. 1165. https://doi.org/10.1016/1044-0305(95)00569-2
  27. Paizs, B.; Suhai, S. Rapid Commun. Mass Spectrom. 2001, 15, 2307. https://doi.org/10.1002/rcm.507
  28. Harrison, A. G. Mass Spectrom. Rev. 1997, 16, 201. https://doi.org/10.1002/(SICI)1098-2787(1997)16:4<201::AID-MAS3>3.0.CO;2-L
  29. Laskin, J.; Yang, Z.; Lam, C.; Chu, I. K. Anal. Chem. 2007, 79, 6607. https://doi.org/10.1021/ac070777b
  30. Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. J. Am. Chem. Soc. 1996, 118, 8365. https://doi.org/10.1021/ja9542193
  31. Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. Anal. Chem. 1993, 65, 1594. https://doi.org/10.1021/ac00059a019

Cited by

  1. Dissociation behavior of a bifunctional tempo-active ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry vol.50, pp.2, 2015, https://doi.org/10.1002/jms.3543
  2. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods vol.27, pp.12, 2016, https://doi.org/10.1007/s13361-016-1487-9
  3. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules vol.16, pp.10, 2014, https://doi.org/10.1039/c3cp54825b
  4. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS vol.28, pp.1, 2017, https://doi.org/10.1007/s13361-016-1426-9
  5. Guanidination of lysine residue improves the sensitivity and facilitates the interpretation of free radical initiated peptide sequencing (FRIPS) mass spectrometry results vol.390, 2015, https://doi.org/10.1016/j.ijms.2015.06.019
  6. Bromine isotopic signature facilitatesde novosequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry vol.50, pp.2, 2015, https://doi.org/10.1002/jms.3539
  7. TEMPO-Assisted Free Radical-Initiated Peptide Sequencing Mass Spectrometry (FRIPS MS) in Q-TOF and Orbitrap Mass Spectrometers: Single-Step Peptide Backbone Dissociations in Positive Ion Mode vol.28, pp.1, 2017, https://doi.org/10.1007/s13361-016-1508-8
  8. Free Radical–Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis pp.1879-1123, 2018, https://doi.org/10.1007/s13361-018-2100-1