DOI QR코드

DOI QR Code

Real-time Assay of Toxic Lead in In Vivo Living Plant Tissue

  • Ly, SuwYoung (Biosensor Research Institute in Seoul National University of Science and Technology) ;
  • Kim, Nack Joo (Dept. of Fine Chemistry, Seoul National Univ. of Science and Technology) ;
  • Youn, Minsang (Advanced Scientific Research Group in Shinil High School) ;
  • Kim, Yongwook (Advanced Scientific Research Group in Shinil High School) ;
  • Sung, Yeolmin (Advanced Scientific Research Group in Shinil High School) ;
  • Kim, Dohoon (Advanced Scientific Research Group in Shinil High School) ;
  • Chung, Tackhyun (Advanced Scientific Research Group in Shinil High School)
  • Received : 2013.11.09
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

A method of detecting lead was developed using square wave anodic stripping voltammetry (SWASV) with DNA-carbon nanotube paste electrode (CNTPE). The results indicated a sensitive oxidation peak current of lead on the DNA-CNTPE. The curves were obtained within a concentration range of 50 $ngL^{-1}-20mgL^{-1}$ with preconcentration time of 100, 200, and 400 sec at the concentration of $mgL^{-1}$, ${\mu}gL^{-1}$, and $ngL^{-1}$, respectively. The observed relative standard deviation was 0.101% (n = 12) in the lead concentration of 30.0 ${\mu}gL^{-1}$ under optimum conditions. The low detection limit (S/N) was pegged at 8 $ngL^{-1}$ ($2.6{\times}10^{-8}M$). Results showed that the developed method can be used in real-time assay in vivo without requiring any pretreatment and pharmaceutical samples, and food samples, as well as other materials requiring water source contamination analyses.

Keywords

References

  1. Roscoe, R.J., Gittleman, J.L., Deddens, J.A., Petersen, M.R. and Halperin, W.E. (1999) Blood lead levels among children of lead-exposed workers: A meta-analysis. Am. J. Ind. Med., 36, 475-481. https://doi.org/10.1002/(SICI)1097-0274(199910)36:4<475::AID-AJIM9>3.0.CO;2-O
  2. Di Nezio, M.S., Palomeque, M.E. and Fernandez Band, B.S. (2004) A sensitive spectrophotometric method for lead determination by flow injection analysis with on-line preconcentration. Talanta, 63, 405-409. https://doi.org/10.1016/j.talanta.2003.11.012
  3. Silbergeld, E.K., Waalkes, M. and Rice, J.M. (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am. J. Ind. Med., 38, 316-323. https://doi.org/10.1002/1097-0274(200009)38:3<316::AID-AJIM11>3.0.CO;2-P
  4. Ariza, M.E. and Williams, M.V. (1999) Lead and mercury mutagenesis: Type of mutation dependent upon metal concentration. J. Biochem. Mol. Toxicol., 13, 107-112. https://doi.org/10.1002/(SICI)1099-0461(1999)13:2<107::AID-JBT6>3.0.CO;2-0
  5. Heo, Y., Lee, W.T. and Lawrence, D.A. (1998) Differential effects of lead and cAMP on development and activities of Th1- and Th2-lymphocytes. Toxicol. Sci., 43, 172-185.
  6. Dorman, R.V. and Freeman, E.J. (2002) Lead dependent effects on arachidonic acid accumulation and the proliferation of vascular smooth muscle. J. Biochem. Mol. Toxicol., 16, 245-253. https://doi.org/10.1002/jbt.10045
  7. Karakaya, A.E., Ozcagli, E., Ertas, N. and Sardas, S. (2005) Assessment of abnormal DNA repair responses and geno-toxic effects in lead exposed workers. Am. J. Ind. Med., 47, 358-363. https://doi.org/10.1002/ajim.20145
  8. Cervantes, M.C., David, J.T., Loyd, D.R., Salinas, J.A. and Delville, Y. (2005) Lead exposure alters the development of agonistic behavior in golden hamsters. Dev. Psychobiol., 47, 158-165. https://doi.org/10.1002/dev.20076
  9. Sanna, E., Liguori, A., Palmas, L., Soro, M.R. and Floris, G. (2003) Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol. Environ. Saf., 55, 293-299. https://doi.org/10.1016/S0147-6513(02)00072-6
  10. Yokel, J. and Delistraty, D.A. (2003) Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the hanford site (USA). Environ. Toxicol., 18, 104-114. https://doi.org/10.1002/tox.10106
  11. Slobozhanina, E.I., Kozlova, N.M., Lukyanenko, L.M., Oleksiuk, O.B., Gabbianelli, R., Fedeli, D., Caulini, G.C. and Falcioni, G. (2005) Lead-induced changes in human erythrocytes and lymphocytes. J. Appl. Toxicol., 25, 109-114. https://doi.org/10.1002/jat.1043
  12. Kozelka, P.B., Sanudo-Wilhelmy, S., Flegal, A.R. and Bruland, K.W. (1997) Physico-chemical speciation of lead in south San Francisco bay. Estuarine Coastal Shelf Sci., 44, 649-658. https://doi.org/10.1006/ecss.1996.0129
  13. Scarponi, G., Barbante, C., Turetta, C., Gambaro, A. and Cescon, P. (1997) Chemical contamination of antarctic snow: The case of lead. Microchem. J., 55, 24-32. https://doi.org/10.1006/mchj.1996.1354
  14. Liu, W. and Lee, H.K. (1999) Simultaneous analysis of lead, mercury and selenium species by capillary electrophoresis with combined ethylenediaminetetraacetic acid complexation and field-amplified stacking injection. Electrophoresis, 20, 2475-2483. https://doi.org/10.1002/(SICI)1522-2683(19990801)20:12<2475::AID-ELPS2475>3.0.CO;2-M
  15. Yang, J.L., Wang, L.C., Chang, C.Y. and Liu, T.Y. (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen., 33, 194-201. https://doi.org/10.1002/(SICI)1098-2280(1999)33:3<194::AID-EM3>3.0.CO;2-O
  16. Chen, S.M. and Chen, S.V. (2003) The interaction of watersoluble iron porphyrins with DNA films and the electrocatalytic properties for inorganic and organic nitro compounds. Electrochim. Acta, 48, 4049-4060. https://doi.org/10.1016/S0013-4686(03)00562-0
  17. De Donato, A. and Gutz, I.G.R. (2005) Fast mapping of gunshot residues by batch injection analysis with anodic stripping voltammetry of lead at the hanging mercury drop electrode. Electroanalysis, 17, 105-112. https://doi.org/10.1002/elan.200303048
  18. Tsai, Y.C., Davis, J., Compton, R.G., Ito, S. and Ono, N. (2001) Polypyrrole coated mercury film electrodes for sono-ASV analysis of cadmium and lead. Electroanalysis, 13, 7-12. https://doi.org/10.1002/1521-4109(200101)13:1<7::AID-ELAN7>3.0.CO;2-Z
  19. Casado, M., Daunert, S. and Valiente, M. (2001) Lead-selective electrode based on a quinaldic acid derivative. Electroanalysis. 13, 54-60. https://doi.org/10.1002/1521-4109(200101)13:1<54::AID-ELAN54>3.0.CO;2-1
  20. Angelone, L.M., Potthast, A., Segonne, F., Iwaki, S., Belliveau, J.W. and Bonmassar, G. (2004) Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies. Bioelectromagnetics, 25, 285-295. https://doi.org/10.1002/bem.10198
  21. Honeychurch, K.C., Hart, J.P. and Cowell, D.C. (2000) Voltammetric behavior and trace determination of lead at a mercury-free screen-printed carbon electrode. Electroanalysis, 12, 171-177. https://doi.org/10.1002/(SICI)1521-4109(200002)12:3<171::AID-ELAN171>3.0.CO;2-Q
  22. Wang, J., Lu, J., Hocevar, S.B. and Ogorevc, B. (2001) Bismuth-coated screen-printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis, 13, 13-16. https://doi.org/10.1002/1521-4109(200101)13:1<13::AID-ELAN13>3.0.CO;2-F
  23. da Silva, S.M. (1998) Determination of lead in the absence of supporting electrolyte using carbon fiber ultramicroelectrode without mercury film. Electroanalysis, 10, 722-725. https://doi.org/10.1002/(SICI)1521-4109(199808)10:10<722::AID-ELAN722>3.0.CO;2-6
  24. Degefa, T.H., Chandravanshi, B.S. and Alemu, H. (1999) Differential pulse anodic stripping voltammetric determination of lead(II) with N-p-chlorophenylcinnamo-hydroxamic acid modified carbon paste electrode. Electroanalysis, 11, 1305-1311. https://doi.org/10.1002/(SICI)1521-4109(199911)11:17<1305::AID-ELAN1305>3.0.CO;2-2
  25. Wang, J., Liu, G. and Merkoi, A. (2003) Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Anal. Chim. Acta, 482, 149-155. https://doi.org/10.1016/S0003-2670(03)00206-X
  26. de los Santos Alvarez, P., de los Santos Alvarez, N., Lobo Castanon, M.L., Miranda Ordieres, A.J. and Tunon Blanco, P. (2006) Amplified label-free electrocatalytic detection of DNA in the presence of calcium ions. Biosens. Bioelectron., 21, 1507-1512. https://doi.org/10.1016/j.bios.2005.07.003
  27. Gil Ede, S., Serrano, S.H., Ferreira, E.I. and Kubota, L.T. (2002) Electrochemical evaluation of rhodium dimer-DNA interactions. J. Pharm. Biomed. Anal., 29, 579-584. https://doi.org/10.1016/S0731-7085(01)00700-2
  28. Wang, J. and Musameh, M. (2004) Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes. Anal. Chim. Acta, 511, 33-36. https://doi.org/10.1016/j.aca.2004.01.035