References
- M. A. Alves, P. Cruz, A. Mendes, F. D. Magalhaes, F. T. Pinho, P. J. Oliveira, Adaptive multiresolution approach for solution of hyperbolic PDEs, Comput. Methods Appl. Mech. Engrg. 191 (2002) 3909-3928. https://doi.org/10.1016/S0045-7825(02)00334-1
- B. L. Bihari, A. Harten, Application of generalized wavelets: An adaptive multiresolution scheme, J. Comput. Appl. Math. 61 (1995), 275-321. https://doi.org/10.1016/0377-0427(94)00070-1
- M. S. Darwish, F. Moukalled, Normalized variable and space formulation methodology for high-resolution schemes, Numer. Heat Transfer Part B 30 (1994) 217-237.
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Series in Appl. Math. 61, SIAM, 1992.
- M. O. Domingues, S. M. Gomes, O. Roussel, K. Schneider, An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput. Phys. 227 (2008), 3758-3780. https://doi.org/10.1016/j.jcp.2007.11.046
- M. O. Domingues, S. M. Gomes, O. Roussel, K. Schneider, Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations, Appl. Nume. Math. 59 (2009), 2303-2321. https://doi.org/10.1016/j.apnum.2008.12.018
- D. L. Donoho, Interpolating wavelet transforms, Tech. rep., Department of Statistics, Stanford University (1992).
- S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185-204. https://doi.org/10.1016/0022-247X(86)90077-6
- S. Goedecker, Wavelets and their applications for the solution of partial differential equations in physics, Vol. 4, Presses Polytechniques et Universitaires Romandes, 1998.
- G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989) 49-68. https://doi.org/10.1007/BF01889598
- P. H. Gaskell and A. K. C. Lau, Curvature-Compensated Convective Transport: SMART, A New Boundednesspreserving Transport Algorithm, Inter. J. Nume. Methods in Fluids 8 (1988), 617-641. https://doi.org/10.1002/fld.1650080602
- S. Gottlieb, C.-W. Shu, Total Variation Diminishing Runge-Kutta Schemes, Math. of Computation 67(2231) (1998) 73-85. https://doi.org/10.1090/S0025-5718-98-00913-2
- A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws, J. Comput. Phys. 49 (1983), 357-393. https://doi.org/10.1016/0021-9991(83)90136-5
- A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys. 71 (1987), 231-303. https://doi.org/10.1016/0021-9991(87)90031-3
- J. Hesthaven, T.Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Texts in Applied Mathematics, Springer Verlag, 2008.
- L. Jameson, A Wavelet-optimized Very High Order Adaptive Grid And Order Numerical Method, SIAM J. Sci. Comput. 19(6) (1998) 1980-2013. https://doi.org/10.1137/S1064827596301534
- A. J. Kozakevicius, L. C. C. Santos, ENO adaptive method for solving one-dimensional conservation laws, Appl. Nume. Math. 59 (2009), 2337-2355. https://doi.org/10.1016/j.apnum.2008.12.020
- A. Kurganov, E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations, J. Comput. Phys. 160 (2000), 241-282. https://doi.org/10.1006/jcph.2000.6459
- P. D. Lax, B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (1960), 217-237. https://doi.org/10.1002/cpa.3160130205
- B. van. Leer, Towards the ultimate conservative difference scheme I. The quest of monotonicity, Springer Lecture Notes Phys. 18 (1973), 163-168.
- B. van. Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comput. Phys. 14 (1974), 361-370. https://doi.org/10.1016/0021-9991(74)90019-9
- B. van. Leer, Towards the ultimate conservative difference scheme III. Upstream-centered finite difference schemes for ideal compressible flow, J. Comput. Phys. 23 (1977), 263-275. https://doi.org/10.1016/0021-9991(77)90094-8
- B. van. Leer, Towards the ultimate conservative difference scheme IV. A new approach to numerical convection, J. Comput. Phys. 23 (1977), 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
- B. van. Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method, J. Comput. Phys. 32 (1979), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
- B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng, 19 (1979) 59-98. https://doi.org/10.1016/0045-7825(79)90034-3
- B. P. Leonard, Locally Modified Quick Scheme for Highly Convective 2-D and 3-D Flows, Num. Methods in Lam. and Turb. Flows, eds. Taylor C., Morgan K., Pineridge Press, Swansea, UK 5 (1987) 35-47.
- B. P. Leonard, Simple High-accuracy Resolution Program For Convective Modelling Of Discontinuities, Inter. J. Numer. Meth. Fluids 8 (1988) 1291-1318. https://doi.org/10.1002/fld.1650081013
- R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
- X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994) 200-212. https://doi.org/10.1006/jcph.1994.1187
- S. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Trans. Patte. Machi. Intel. 11(7) (1989).
-
S. Mallat, Multiresolution approximations and wavelet orthonormal bases of
$L^2$ (R), Trans. Amer. Math. Soc. 315 (1989) 69-87. - S. Mallat, A Wavelet Tour of Signal Processing, 2nd Edition, Academic Press, 1998.
- P. L. Roe, Approximate Riemann solvers, parameter vectors and difference scheme, J. Comput. Phys. 43 (1981) 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
- C.-W. Shu, S. Osher, Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, J. Comput. Phys. 77 (1988) 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
- G. A. Sod, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comput. Phys. 27 (1978) 1-31. https://doi.org/10.1016/0021-9991(78)90023-2
- W. Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996) 186-200. https://doi.org/10.1006/acha.1996.0015
- W. Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM, J. Math. Anal 29 (2) (1998) 511-546. https://doi.org/10.1137/S0036141095289051
- E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, third edition, Springer, 2009.
- O. V. Vasilyev, S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. Comput. Phys. 125 (1996) 498-512. https://doi.org/10.1006/jcph.1996.0111
- O. V. Vasilyev, S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs, J. Comput. Phys. 138 (1997) 16-56. https://doi.org/10.1006/jcph.1997.5814
- O. V. Vasilyev, C. Bowman, Second-generation wavelet collocation method for the solution of partial differential equations, J. Comput. Phys. 165 (2000) 660-693. https://doi.org/10.1006/jcph.2000.6638
- O. V. Vasilyev, Solving multi-dimensional evolution problems with localized structures using second generation wavelets, Int. J. Comput. Fluid Dynam. 17 (2) (2003) 151-168. https://doi.org/10.1080/1061856021000011152
- J. D. Regele, O. V. Vasilyev, An adaptive wavelet-collocation method for shock computations, Inter. J. Comput. Fluid Dynam. 23(7) (2009) 503-518. https://doi.org/10.1080/10618560903117105
- R. F. Warming, R. M. Beam, Upwind second-order difference schemes and applications in unsteady aerodynamic flows, in Proc. AIAA 2nd Computational Fluid Dynamics Conf., Hartford, Conn, 1975.