References
- B.M. Caradoc-Davies. Vortex dynamics in Bose-Einstein condensate. PhD thesis, University of Otago (NZ), 2000.
- M.J. Davis. Dynamics in Bose-Einstein condensate. PhD thesis, University of Oxford (UK), 2001.
- S. W¨uster, T.E. Argue, and C.M. Savage. Numerical study of the stability of skyrmions in Bose-Einstein condensates. Phys. Rev. A, 72(4), 2005.
- R. Scott, C. Gardiner, and D. Hutchinson. Nonequilibrium dynamics: Studies of the reflection of Bose-Einstein condensates. Laser Phys., 17:527-532, 2007. https://doi.org/10.1134/S1054660X07040354
- C.N. Liu, G.G. Krishna, M. Umetsu, and S. Watanabe. Numerical investigation of contrast degradation of Bose-Einstein condensate interferometers. Phys. Rev. A, 79(1), 2009.
- J. Hult. A fourth-order Runge-Kutta in the Interaction Picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol., 25(12):3770-3775, 2007. https://doi.org/10.1109/JLT.2007.909373
- A. Heidt. Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technol., 27(18):3984-3991, 2009. https://doi.org/10.1109/JLT.2009.2021538
- A. Fernandez, S. Balac, A. Mugnier, F. Mahe, R. Texier-Picard, T. Chartier, and D. Pureur. Numerical simulation of incoherent optical wave propagation in nonlinear fibers. To appear in Eur. Phys. J. - Appl. Phys., 2013.
- J.C. Butcher. Numerical methods for ordinary differential equations. John Wiley and Sons, 2008.
- E. Hairer, S.P. Norsett, and G. Wanner. Solving ordinary differential equations I: nonstiff problems. Springer-Verlag, 1993.
- M. Crouzeix and A. Mignot. Analyse numerique des equations differentielles. Masson, Paris, 1984.
- J.S. Townsend. A modern approach to quantum mechanics. International series in pure and applied physics. University Science Books, 2000.
- M. Guenin. On the interaction picture. Commun. Math. Phys., 3:120-132, 1966. https://doi.org/10.1007/BF01645449
- S. Balac and F. Mahe. Embedded Runge-Kutta scheme for step-size control in the Interaction Picture method. Comput. Phys. Commun., 184:1211-1219, 2013. https://doi.org/10.1016/j.cpc.2012.12.020
- S. N. Papakostas and G. Papageorgiou. A family of fifth-order RungeKutta pairs. Math. Comp, 65:215, 1996. https://doi.org/10.1090/S0025-5718-96-00675-8
- J.R. Cash and A.H. Karp. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides". ACM Trans. Math. Software, 16:201-222, 1990. https://doi.org/10.1145/79505.79507
- G. Agrawal. Nonlinear fiber optics. Academic Press, 3rd edition, 2001.
- B.M. Caradoc-Davies, R.J. Ballagh, and P.B. Blakie. Three-dimensional vortex dynamics in Bose-Einstein condensates. Phys. Rev. A, 62:011602, 2000. https://doi.org/10.1103/PhysRevA.62.011602
- A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Number vol. 44 in Applied Mathematical Sciences. Springer, 1992.
- S. Balac, A. Fernandez, F. Mahe, F. Mehats, and R. Texier-Picard. The Interaction Picture method for solving the Generalized Nonlinear Schrodinger Equation in optics. submitted to SIAM J. Numer. Anal., 2013.
- G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5(3):506-517, 1968. https://doi.org/10.1137/0705041
- J.C. Butcher. On Runge-Kutta processes of high order. J. Aust. Math. Soc., 4(02):179-194, 1964. https://doi.org/10.1017/S1446788700023387
- E. Fehlberg. Low order classical Runge-Kutta formulas with stepsize control and applications to some heat transfert problems. Technical report, National Aeronautics and Space Administration, 1969.
- J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math., 6:19-26, 1980. https://doi.org/10.1016/0771-050X(80)90013-3
- W. Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math. Phys., (46):434-453, 1901.
- C.R. Cassity. The complete solution of the fifth order Runge-Kutta equations. SIAM J. Numer. Anal., 6(3):432-436, 1969. https://doi.org/10.1137/0706038
- Maplesoft. Maple 16 Programming Guide. Waterloo Maple Inc., 2012.
- L. Shampine. Some practical Runge-Kutta formulas. Math. Comp., 46:135-150, 1986. https://doi.org/10.1090/S0025-5718-1986-0815836-3
- J.H.E. Cartwright and O. Piro. The dynamics of Runge-Kutta methods. Int. J. Bifurcation and Chaos, 2:427-49, 1992. https://doi.org/10.1142/S0218127492000641
- J.D. Lawson. An order five Runge-Kutta process with extended region of stability. SIAM J. Numer. Anal., 3(4):593-597, 1966. https://doi.org/10.1137/0703051
- L. Shampine. Local error estimation by doubling. Computing, 34:179-190, 1985. https://doi.org/10.1007/BF02259844
Cited by
- The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics vol.50, pp.4, 2013, https://doi.org/10.1051/m2an/2015060