References
- Thomas Erneux, Applied Delay Differential Equations. Springer (2009)
- A. Longtin and J. G. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci., 90 (1988), 183-199. https://doi.org/10.1016/0025-5564(88)90064-8
- C. G. Lange and R.M. Miura, Singular perturbation analysis of boundary-value problems for differentialdifference equations V. Small shifts with layer behavior. SIAM. J. APPL. MATH., 54(1) (1994), 249-272. https://doi.org/10.1137/S0036139992228120
- M.W. Derstine, H.M. Gibbs, F.A. Hopf and D.L. Kaplan, Bifurcation gap in a hybrid optical system. Phys. Rev. A., 26 (1982), 3720-3722. https://doi.org/10.1103/PhysRevA.26.3720
-
V.Y. Glizer, Asymptotic analysis and solution of a finite-horizon
$H_{\infty}$ control problem for singularly-perturbed linear systems with small state delay. J. Optim. Theory Appl., 117 (2003), 295-325. https://doi.org/10.1023/A:1023631706975 - P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan and G. I. Shishkin, Robust computational techniques for boundary layers. Chapman Hall/CRC, Boca Raton, (2000).
- E.P. Doolan, J.J.H. Miller and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers. Boole, Dublin, 1980.
- P.A. Farrell, J.J.H. Miller, E. O'Riordan and G. I. Shishkin, Singularly perturbed differential equations with discontinuous source terms. In: Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems. (L.G. Vulkov, J.J.H. Miller and G.I. Shishkin eds.), pp 23-32, New York, USA : Nova Science Publishers. Inc, (2000).
- P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Singularly perturbed convection diffusion problems with boundary and weak interior layers. Journal of Computational Applied Mathematics, 166 (2004), 133-151. https://doi.org/10.1016/j.cam.2003.09.033
-
M. K. Kadalbajoo and K. K. Sharma, An
$\epsilon$ -uniform fitted operator method for solving boundary-value problems for singularly perturbed delay differential equations: Layer behavior. International Journal of Computer Mathematics, 80(10) (2003), 1261-1276. https://doi.org/10.1080/0020716031000103394 - M. K. Kadalbajoo and K. K. Sharma, Parameter uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior. Electronic Transaction on Numerical Analysis, 23 (2006), 180-201.
- Pratima Rai and K. K. Sharma, Fitted mesh method for singularly perturbed delay differential turning point problems exhibiting boundary layers. International Journal of Computer Mathematics, 89(7) (2012), 944-961. https://doi.org/10.1080/00207160.2012.668890
- M. K. Kadalbajoo and K. K. Sharma, Numerical Analysis of Boundary-Value Problems for Singularly- Perturbed Differential- Difference Equations with Small Shifts of Mixed Type. Journal of Optimization Theory and Applications, 115(1) (2002), 145-163. https://doi.org/10.1023/A:1019681130824
- J. Mohapatra and S. Natesan, Uniformly convergent numerical method for singularly perturbed differential- difference equation using grid equidistribution. International Journal for Numerical Methods in Biomedical Engineering, 27(9) (2011), 1427-1445.
- M. K. Kadalbajoo and K. K. Sharma, A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations. Applied Mathematics and Computation, 197 (2008), 692-707. https://doi.org/10.1016/j.amc.2007.08.089
- M. K. Kadalbajoo and K. K. Sharma, Parameter uniform numerical method for a boundary value problem for singularly perturbed nonlinear delay differential equation of neutral type. International Journal of Computer Mathematics, 81(7) (2004), 845-862. https://doi.org/10.1080/00207160410001708823
- M.K. Kadalbajoo and Devendra Kumar, A computational method for singularly perturbed nonlinear differential-difference equations with small shift. Applied Mathematical Modelling, 34 (2010), 2584-2596. https://doi.org/10.1016/j.apm.2009.11.021
- V. Subburayan and N. Ramanujam, Asymptotic Initial Value Technique for singularly perturbed convection-diffusion delay problems with boundary and weak interior layers. Applied Mathematics Letters, 25 (2012), 2272-2278. https://doi.org/10.1016/j.aml.2012.06.016
- V. Subburayan and N. Ramanujam, An Initial Value Technique for Singularly Perturbed Convection-Diffusion Problems with a Delay. Journal of Optimization Theory and Applications, 158(1) (2013), 234-250. https://doi.org/10.1007/s10957-012-0200-9
- C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems for differentialdifference equations. SIAM. J. APPL. MATH., 42(3) (1982), 502-530. https://doi.org/10.1137/0142036
- C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Co. Singapore, (1984).
- Zhongdi Cen, A Hybrid finite difference scheme for a class of singularly perturbed delay differential equations. Neural, Parallel, and Scientific Computations, 16 (2008), 303-308.
- Zhongdi Cen, Jingfeng Chen and Lifeng Xi, A Second-Order Hybrid Finite Difference Scheme for a system of Coupled Singularly Perturbed Initial Value Problems. International Journal of Nonlinear Science, 8(2) (2009), 148-154.
- T. Valanarasu and N. Ramanujam, An asymptotic Initial-Value Method for boundary value problems for a system of singularly perturbed Second-Order ordinary differential equations. Applied Mathematics and Computation, 147 (2004), 227-240. https://doi.org/10.1016/S0096-3003(02)00663-X
Cited by
- A Robust Computational Method for System of Singularly Perturbed Differential Difference Equations with Discontinuous Convection Coefficients vol.13, pp.4, 2013, https://doi.org/10.1142/s0219876216410085
- An Iterative Numerical Method for a Weakly Coupled System of Singularly Perturbed Convection-Diffusion Equations with Negative Shifts vol.3, pp.suppl1, 2013, https://doi.org/10.1007/s40819-017-0346-0
- Solving Linear Second-Order Singularly Perturbed Differential Difference Equations via Initial Value Method vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5259130
- Parameter Uniform Method for a Singularly Perturbed System of Delay Differential Equations of Reaction-Diffusion Type with Integral Boundary Conditions vol.5, pp.3, 2013, https://doi.org/10.1007/s40819-019-0675-2