DOI QR코드

DOI QR Code

Evaluation of Shrinkage Strain of Alkali-Activated Slag Concrete

알칼리활성 슬래그 콘크리트의 건조수축 변형률 평가

  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University) ;
  • Seo, Eun-A (Dept. of Architectural Engineering, Kyonggi University Graduate School)
  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 서은아 (경기대학교 일반대학원 건축공학과)
  • Received : 2013.04.09
  • Accepted : 2013.08.27
  • Published : 2013.12.31

Abstract

The unrestrained shrinkage strain of alkali-activated (AA) slag concrete was examined and compared with design equations specified in code provisions and empirical equations proposed by Yang et al. The main parameters investigated were the water-to-binder ratio (W/B), unit water content and fine aggregate-to-total aggregate ratio (S/a). Test results revealed that shrinkage strain of AA slag concrete is nearly proportional to the W/B ratio, whereas its time function is independent of the W/B ratio. The shrinkage strain of AA slag concrete increased significantly when the unit water content is above $185kg/m^3$, whereas it is marginally affected by the S/a ratio. The design equation of ACI 209 considerably overestimates the shrinkage behavior of AA slag concrete, whereas CEB-FIP equation tends to underestimate the shrinkage at the age more than 28 days. The empirical equation of Yang et al. is in better agreement with test results, showing that values of mean and standard deviation of error coefficients obtained from each specimen are 016 and 0.07, respectively.

알칼리활성(alkali-activated, AA) 슬래그 콘크리트의 건조수축 변형률을 평가하고 설계기준 및 제안모델의 적용성을 확인하기 위하여 단위수량, 물-결합재비 및 잔골재율을 변수로 17배합의 콘크리트를 준비하였다. 측정된 시간함수 및 건조수축 변형률은 ACI 209 및 CEB-FIP 기준식과 Yang 등의 제안모델과 비교하였다. 실험 결과 AA 슬래그 콘크리트의 건조수축 변형률은 물-결합재비에 현저히 영향을 받았지만 물-결합재비에 대한 시간함수의 영향은 비교적 작았다. AA 슬래그 콘크리트의 건조수축 변형률은 단위수량 $185kg/m^3$이상일 때 급격히 증가하였다. 반면, 잔골재율이 AA 슬래그 콘크리트 건조수축에 미치는 영향은 미미했다. 실험 결과와 평가모델의 비교에서 ACI 209 식은 AA슬래그 콘크리트의 건조수축을 상당히 과대평가하였으며, CEB-FIP 기준식은 재령 28일 이후 과소평가 정도가 증가하는 경향이 있었다. 반면 Yang 등의 모델의 오차계수의 평균과 표준편차가 0.16과 0.07로서 실험 결과와 잘 일치하였다.

Keywords

References

  1. Shi, C., Krivenko, P. V., and Roy, D., Alkali-Activated Cements and Concretes, Taylor and Francis, 2006, 376 pp.
  2. Korea Concrete Institute, Concrete and Environment, Kimoondang Publishing Company, 2011, pp. 123-144.
  3. Palacios, M. and Puertas, F., "Effect of Shrinkage-Reducing Admixtures on the Properties of Alkali-Activated Slag Mortars and Pastes," Cement and Concrete Research, Vol. 37, No. 5, 2007, pp. 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  4. Melo Neto, A. A., Cincotto, M. A., and Repette. W., "Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement," Cement and Concrete Research, Vol. 38, No. 4, 2008, pp. 565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
  5. Atis, C. D., Bilim, C., Celik, O., and Karahan, O., "Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar," Construction and Building Materials, Vol. 23, No. 1, 2009, pp. 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  6. Kim, G. W., Kim, B. J., Yang, K. H., and Song, J. K., "Strength Development of Blended Sodium Alkali- Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar," Journal of the Korea Concrete Institute, Vol. 24, No. 2, pp. 137-145. (doi: http://dx.doi.org/10.4334/JKCI. 2012.24.2.137)
  7. Cho, A. R., Yang, K. H., and Song, J. K., "Effect of Water-Binder Ratio on Shrinkage Strain of Alkali- Activated Slag Concrete," Proceedings of the Korea Concrete Institute, Vol. 23, No. 2, 2011, pp. 359-360
  8. Yang, K. H., Cho, A. R., and Song, J. K., "Unrestrained Short-Term Shrinkage of Calcium Hydroxide-Based Alkali- Activated Slag Concrete," ACI Materials Journal, Vol. 110, No. 2, 2013, pp. 127-136.
  9. Kutti, T., Berntsson, L., and Chandra, S., "Shrinkage of Cements with High Content of Blast-Furnace Slag, in Malhotra," V. M. (Ed.), Proceedings of Fourth CANMET/ACI International Conference on Fly Ash, Slag and Natural Pozzolans in Concrete, 1992, pp. 615-625.
  10. ACI 209R-92. Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures, ACI Manual of Concrete, Practice Part 1: Materials and General Properties of Concrete, 1994, 47 pp.
  11. Comite Euro-International du Beton (CEB-FIP), Structural Concrete : Textbook on Behaviour, Design and Performance, International Federation for Structural Concrete (Fib), 1999, 224 pp.
  12. Ojdrovic, R. P. and Zarghamee, M. S., "Concrete Creep and Shrinkage Prediction from Short-Term Tests," ACI Materials Journal, Vol. 93, No. 2, 1996, pp. 169-177.
  13. Yang, E. I., Kim, I. S., Yi, S. T., and Lee, K. M., "Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete," Journal of the Korea Concrete Institute, Vol. 22, No. 1, 2010, pp. 85-91. (doi: http://dx.doi.org/10.4334/JKCI.2010.22.1.085)
  14. Neville, A. M., Properties of Concrete, Addison Wesley Longman, 1995, 844 pp.