• Title/Summary/Keyword: time function

Search Result 13,476, Processing Time 0.044 seconds

Some Study on Time Dependent Correlation Function and Its Applications (Time Dependent Correlation Function과 그의 응용에 관한 연구)

  • 안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.6
    • /
    • pp.25-44
    • /
    • 1973
  • The please relation between motive force and result is reviewed in view point of the correlation function as well as the redundancy in a continuous signal which permits the sampled treatment. A new correlation function (to be named Time Dependent Correlation Function) which is a functon of time, is defined in order to indicate the variation of the correlation between two signals. As application a phase looked loop is analysed which shows the increase of correlation between input signal and output signal of the loop after the application of the input signal. Finally again the T.D.Correlation Function method is used to show how the polyphase envelope detection-method is justifiable by this method.

  • PDF

On the Ultra-Wideband Ambiguity Function (초광대역 Ambiguity Function에 관한 연구)

  • 이준용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.368-373
    • /
    • 2004
  • Extremely fine tine resolution of ultra-wideband (UWB) signal poses a new problems to the system designer. A reasonable accuracy of the system clock is necessary to process signals with such a high space resolution. A useful way of illustrating the time resolution of a signal is to evaluate the ambiguity function. The ambiguity function for carrierless UWB defined using the time mismatch and time scaling factor as its two parameters. The UWB ambiguity function is evaluated for various signaling schemes of impulse radio.

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

Influence of time-of-day on respiratory function in normal healthy subjects

  • Kwon, Yong Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.374-378
    • /
    • 2013
  • Purpose: Human body have biological rhythmic pattern in a day, which is affected by internal and external environmental factors. We investigated whether respiratory function was fluctuated according to the influence of time-of-day (around at 9 am, 1 pm, and 6 pm) in health subjects, using pulmonary function test (PFT). Methods: Eighteen healthy volunteers (8 men, mean ages; $22.4{\pm}1.6$, mean heights; $166.61{\pm}9.60$, mean weight; $59.3{\pm}10.3$) were recruited. Pulmonary function test (PFT) was measured at three time points in day, around 9 am, 1 pm, and 6 pm in calm research room with condition of under 55dB noise level, using a spirometer (Vmax 229, SensorMecis, USA). Forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FVC/FEV1, and peak expiratory flow (PEF) were acquired. Results: In comparison of raw value of PFT among three time points, subjects showed generally better respiratory function at 9 am, than at other points, although no significance was found. In comparison of distribution of ranking for respiratory function in each individual, only PEF showed significant difference. In general, distributional ratio of subjects who showed best performance of respiratory function in a day was high. Conclusion: These findings showed that circadian rhythm by diurnal pattern was not detected on respiratory function throughout all day. But, best performance on respiratory function was observed mostly in the morning, although statistical significance did not exist.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

Radial basis function network design for chaotic time series prediction (혼돈 시계열의 예측을 위한 Radial Basis 함수 회로망 설계)

  • 신창용;김택수;최윤호;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.602-611
    • /
    • 1996
  • In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  • PDF

A study on the Time Series Prediction Using the Support Vector Machine (보조벡터 머신을 이용한 시계열 예측에 관한 연구)

  • 강환일;정요원;송영기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.315-315
    • /
    • 2000
  • In this paper, we perform the time series prediction using the SVM(Support Vector Machine). We make use of two different loss functions and two different kernel functions; i) Quadratic and $\varepsilon$-insensitive loss function are used; ii) GRBF(Gaussian Radial Basis Function) and ERBF(Exponential Radial Basis Function) are used. Mackey-Glass time series are used for prediction. For both cases, we compare the results by the SVM to those by ANN(Artificial Neural Network) and show the better performance by SVM than that by ANN.

Correlation Between Executive Function and Walk While Crossing Over an Obstacle Under Different Gait Phases

  • Seung Min Lee;Han Suk Lee
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Background and Purpose: Dual walking task such as crossing over an obstacle may serve as an excellent tool for predicting early cognitive decline. Thus, this study aimed to investigate correlation between walking while crossing over an obstacle and executive functions under different gait phases to validate the use of walking with an obstacle for predicting early cognitive decline. Methods: A cross-sectional study was conducted on 48 elderly individuals from 2 day-care centers and 3 welfare-centers in Seoul and Gyeonggi, Korea. Executive function tests (Trail Making Test, Stroop test) and dual walking tests (gait speed, cadence, stance time, gait cycle time) were performed and compared using partial correlation analysis. Results: There were significant correlations between executive function and most of the gait variables (stance time, cadence, and gait cycle time) (p<0.05) when crossing over an obstacle while walking. Especially, stance time exhibited significant correlations with most executive functions (p<0.05). Conclusions: When evaluating executive function during walking with an obstacle, post-obstacle-crossing phase and stance time need to be observed.

Implementation of Sound Source Location Detector (음원 위치 검출기의 구현)

  • 이종혁;김진천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1017-1025
    • /
    • 2000
  • The human auditory system has been shown to posses remarkable abilities in the localization and tracking of sound sources. The localization is the result of processing two primary acoustics cues. These are the interaural time difference(ITD) cues and interaural intensity difference(IID) cues at the two ears. In this paper, we propose TEPILD(Time Energy Previous Integration Location Detector) model. TEPILD model is constructed with time function generator, energy function generator, previous location generator and azimuth detector. Time function generator is to process ITD and energy function generator is to process IID. Total average accuracy rate is 99.2%. These result are encouraging and show that proposed model can be applied to the sound source location detector.

  • PDF