References
- D. Strukov, G. Snider, D. Stewart, and R. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, May 2008. https://doi.org/10.1038/nature06932
- Y. Joglekar and S. Wolf, "The elusive memristor: properties of basic electrical circuits," Eur. J. Phys., vol. 30, pp. 661-673, Jan. 2009. https://doi.org/10.1088/0143-0807/30/4/001
- J. Hur, M. Lee, C. Lee, Y. Kim, and C. Kim, "Modeling for bipolar resistive memory switching in transition-metal oxides," Physical Review B, vol. 82, 155321, Oct. 2010. https://doi.org/10.1103/PhysRevB.82.155321
- B. Gao, J. Kang, L. Liu, X. Liu, and B. Yu, "A physical model for bipolar oxide-based resistive switching memory based on ion-transportrecombination effect," Appl. Phys. Lett., vol. 98, 232108, June 2011. https://doi.org/10.1063/1.3599490
- J. Lee, D. Kim, J. Lee, D. Kim, and K. Min, "A compact HSPICE macromodel of resistive RAM," IEICE Electron. Express, vol. 4, no. 19, pp. 600- 605, Oct. 2007. https://doi.org/10.1587/elex.4.600
- N. Akou, T. Asai, T. Yanagida, T. Kawai, and Y. Amemiya, "A behavioral model of unipolar resistive RAMs and its application to HSPICE integration," IEICE Electron. Express, vol. 7, no. 19, pp. 1467-1473, Oct. 2010. https://doi.org/10.1587/elex.7.1467
- Y. Kim and K. Min, "Behavioral model with intermediate states for unipolar resistive memories," Korean Conf. on Semiconductors, Feb. 2013.
- B. Choi, S. Choi, K. Kim, Y. Shin, C. hwang, S. Hwang, S. Cho, S. Park, and S. Hong, "Study on the resistive switching time of TiO2 thin films," Appl. Phys. Lett., vol. 89, 012906, July 2006. https://doi.org/10.1063/1.2219726
- D. Batas and H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling," IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 250-255, Mar. 2011. https://doi.org/10.1109/TNANO.2009.2038051
- C. Jung, E. Lee, and K. Min, "Continuous and accurate PCRAM current-voltage model," Journal of Semiconductor Technology and Science, vol. 11, no. 3, pp. 162-168, Sep. 2011. https://doi.org/10.5573/JSTS.2011.11.3.162
- W. Johnson and R. Mehl, "Reaction kinetics in processes of nucleation and growth," Trans. Am. Inst. Min. Metal., vol. 135, pp. 416-442, 1939.
- C. Yakopcic, T. Taha, G. Subramanyam, R. Pino, and S. Rogers, "A memristor device model," IEEE Electron Device Lett., vol. 32, no. 10, pp. 1436- 1438, Oct. 2011. https://doi.org/10.1109/LED.2011.2163292
-
S. Song, J. Seok, J. Yoon, K. Kim, G. Kim, M. Lee, and C. Hwang, "Johnson-Mehl-Avrami type kinetic model for identifying the evolution of conducting nano-filaments in
$TiO_2$ ReRAM," Korean Conf. on Semiconductors, pp. 421-422, 2011. - A. Oblea, A. Timilsina, D. Moore, and K. Campbell, "Silver chalcogenide based memristor devices," in Proc. IJCNN, pp. 1-3, July 2010.
- G. Snider, "Cortical computing with memristive nanodevices," SciDAC Rev., vol. 10. pp. 58-65 2008.
- J. Yang, M. Pickett, X. Li, D. Ohlberg, D. Stewart, and R. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nat. Nanotechnol., vol. 3, no. 7, pp. 429-433, July 2008. https://doi.org/10.1038/nnano.2008.160
- S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol. 10, no. 4, pp. 1297-1301, Apr. 2010. https://doi.org/10.1021/nl904092h
Cited by
- Circuit-level simulation of resistive-switching random-access memory cross-point array based on a highly reliable compact model vol.17, pp.1, 2018, https://doi.org/10.1007/s10825-017-1116-2