DOI QR코드

DOI QR Code

Structural nature of chemically inequivalent borons in the nonlinear optical material β-BaB2O4 studied using 11B MAS NMR and 11B single-crystal NMR

  • Kim, Woo Young (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Lim, Ae Ran (Department of Carbon Fusion Engineering, Jeonju University)
  • Received : 2013.11.10
  • Accepted : 2013.12.18
  • Published : 2013.12.20

Abstract

Detailed information about the structural nature of three-coordinate borons in ${\beta}-BaB_2O_4$ is obtained through $^{11}B$ MAS NMR and $^{11}B$ single-crystal NMR. The three-coordinate $BO_3$ of the two borons B(1) and B(2) in ${\beta}-BaB_2O_4$ were distinguished. The spin-lattice relaxation time in the laboratory frame $T_1$ for B(1) and B(2) slowly decreases with increasing temperature, whereas the spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for B(1) and B(2), which differs from $T_1$, is nearly constant. The B(1) and B(2) of the two types were distinguished by $^{11}B$ MAS NMR and $^{11}B$ single-crystal NMR.

Keywords

References

  1. C.T. Chen, B.C. Wu, A.D. Jiang, and G.M. You, Sci. Sin. B 18, 235 (1985).
  2. J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999). https://doi.org/10.1021/ar9700365
  3. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayer, B. Gates, Y.D. Yin, F. Kim, and H.Q. Yan, Adv. Mater 15, 353 (2003). https://doi.org/10.1002/adma.200390087
  4. Q. Zhao, X. Zhu, X. Bai, H. Fan, and Y. Xie, Eur. J. Inorg. Chem. 1829 (2007).
  5. J. Zhang, S. Liang, and G. He, Chem. Letters 38, 500 (2009). https://doi.org/10.1246/cl.2009.500
  6. V. Trnovcova, P.P. Fedorov, A.E. Kokh, and I. Furar, J. Phy. Chem. Solid 68, 1024 (2007). https://doi.org/10.1016/j.jpcs.2007.03.012
  7. V. Trnovcova, M. Kubliha, A. Kokh, P.P. Fedorov, and R.M. Zakalyukin, Russian J. Electrochemistry 47, 531 (2011). https://doi.org/10.1134/S1023193511050156
  8. D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, and D. Loiacono, Cryst. Res. Technol. 46, 651 (2011). https://doi.org/10.1002/crat.201100208
  9. A.E. Kokh, T.B. Bekker, V.A. Vlezko, and K.A. Kokh, J. Cryst. Growth 318, 602 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.123
  10. I.G. Kim and S.H. Choh, J. Phys.: Condens. Matter 11, 8283 (1999). https://doi.org/10.1088/0953-8984/11/42/309
  11. A. Sutrisno, C. Lu, R.H. Lipson, and Y. Huang, J. Phys. Chem. C 113, 21196 (2009). https://doi.org/10.1021/jp9044786
  12. A.R. Lim and I.G. Kim, Solid State Commun. 159, 41 (2013). https://doi.org/10.1016/j.ssc.2013.01.020
  13. S.F. Lu, M.Y. He, and J.L. Huang, Acta. Phys. Sin. 31, 948 (1982).
  14. J. Liebertz and S. Stahr, Z. Kristallogr. 165, 91 (1983). https://doi.org/10.1524/zkri.1983.165.1-4.91
  15. R. Frohlich, Z. Kristallogr. 168, 109 (1984). https://doi.org/10.1524/zkri.1984.168.1-4.109
  16. B.G. Wang, Z.P. Lu, E. W. Shi, and W.Z. Zhong, Cryst. Res. Technol. 33, 275 (1998). https://doi.org/10.1002/(SICI)1521-4079(1998)33:2<275::AID-CRAT275>3.0.CO;2-W
  17. S.F. Lu, Z.X. Huang, and J.L. Huang, Acta Cryst. C 62, i73 (2006). https://doi.org/10.1107/S010827010602542X
  18. J. Dolinsek, D. Arcon, B. Zalar, R. Pirc, R. Blinc, and R. Kind, Phys. Rev. B 54, R6811 (1996) https://doi.org/10.1103/PhysRevB.54.R6811
  19. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, (1961).
  20. E. Fukushima, S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley, Reading, MA, (1981).
  21. P. Laszzlo, NMR of Newly Accessible Nuclei, Academic, New York, (1993).

Cited by

  1. Thermodynamic properties and structural geometry of KMgCl3·6H2O single crystals vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.119