DOI QR코드

DOI QR Code

A MISCELLANY OF SELECTION THEOREMS WITHOUT CONVEXITY

  • Kim, Hoonjoo (Department of mathematics education, Sehan University)
  • Received : 2013.10.14
  • Accepted : 2013.11.20
  • Published : 2013.12.25

Abstract

In this paper, we give sufficient conditions for a map with nonconvex values to have a continuous selection and the selection extension property in LC-metric spaces under the one-point extension property. And we apply it to weakly lower semicontinuous maps and generalize previous results. We also get a continuous selection theorem for almost lower semicontinuous maps with closed sub-admissible values in $\mathbb{R}$-trees.

Keywords

References

  1. C. Bardaro and R. Ceppitelli, Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), 484-490. https://doi.org/10.1016/0022-247X(88)90076-5
  2. H. Ben-El-Mechaiekh and M. Oudadess, Some selection theorems without convexity, J. Math. Anal. Appl. 195 (1995), 614-618. https://doi.org/10.1006/jmaa.1995.1377
  3. L. -J. Chu and C. -H. Huang, Generalized selection theorems without convexity, Nonlinear Anal. 73 (2010), 3224-3231. https://doi.org/10.1016/j.na.2010.07.002
  4. F. Deutsch and V. Indumathi and K. Schnatz, Lower semicontinuity, almost lower semicontinuity, and continuous selections for set-valued mappings, J. approx. theory 53 (1988), 266-294. https://doi.org/10.1016/0021-9045(88)90023-8
  5. V. G. Gutev, Unified selection and factorization theorems, Compt. Rend. Acad. Bulgur. Sci. 40 (1987), 13-15.
  6. V. G. Gutev, Selection theorems under an assumption weaker than lower semicontinuity, Topol. Appl. 50 (1993), 129-138. https://doi.org/10.1016/0166-8641(93)90017-8
  7. C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357. https://doi.org/10.1016/0022-247X(91)90402-L
  8. C. D. Horvath, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), 253-269. https://doi.org/10.5802/afst.766
  9. H. Kim and S. Lee, Approximate selections of almost lower semicontinuous multimaps in C-spaces, Nonlinear Anal. 64 (2006), 401-408. https://doi.org/10.1016/j.na.2005.04.037
  10. W. A. Kirk, Hyperconvexity of R-trees, Fund. Math. 156 (1998), 67-72.
  11. J.T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321 (2006), 862-866. https://doi.org/10.1016/j.jmaa.2005.08.042
  12. J.T. Markin, Fixed points, selections and best approximation for multivalued mappings in R-trees, Nonlinear Anal. 67 (2007), 2712-2716. https://doi.org/10.1016/j.na.2006.09.036
  13. E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382. https://doi.org/10.2307/1969615
  14. E. Michael and C. Pixley, A unified theorem on continuous selections, Pacific J. Math. 87 (1980), 187-188. https://doi.org/10.2140/pjm.1980.87.187
  15. K. Przeslawski and L.E. Rybinski, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc. 109 (1990), 537-543. https://doi.org/10.1090/S0002-9939-1990-1002163-X