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A MISCELLANY OF SELECTION THEOREMS

WITHOUT CONVEXITY

Hoonjoo Kim

Abstract. In this paper, we give sufficient conditions for a map
with nonconvex values to have a continuous selection and the se-
lection extension property in LC-metric spaces under the one-point
extension property. And we apply it to weakly lower semicontinu-
ous maps and generalize previous results. We also get a continuous
selection theorem for almost lower semicontinuous maps with closed
sub-admissible values in R-trees.

1. Introduction

In 1956, Michael [13] stated the important and well-known selection
theorem;

Theorem 1.1. Let X be a paracompact space, Y be a Banach space,
and F : X ( Y be a lower semicontinuous map with closed convex
values. Then F has a continuous selection; that is, there is a continuous
function f : X → Y such that f(x) ∈ F (x) for all x ∈ X.

Michael’s selection theorem has been extended to spaces with a gen-
eralized definition of convexity and maps with a weaker notion of lower
semicontinuity. The following selection theorems are examples of such
results in LC-metric spaces, hyperconvex spaces and R-trees;

Theorem 1.2. (Gutev [5]) Let X be a paracompact space, Y be a
Banach space, and F : X ( Y be a weakly lower semicontinuous map
with closed convex values. then F has a continuous selection.
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Theorem 1.3. (Ben-El-Mechaiekh and Oudadess [2]) Let X be a
paracompact space, (Y ; Γ) be a complete LC-metric space, Z ⊂ X with
dimXZ ≤ 0 and F : X ( Y be a lower semicontinuous map with
closed values such that F (x) is Γ-convex for x /∈ Z. Then F admits a
continuous selection.

Theorem 1.4. (Markin [11]) Let X be a paracompact topological
space, (M,d) be a hyperconvex metric space and F : X (M be a quasi-
lower semicontinuous map with closed sub-admissible values. Then F
has a continuous selection.

In Section 3, we give sufficient conditions for a map with nonconvex
values to have a continuous selection and the selection extension prop-
erty in LC-metric spaces under the one-point extension property. We
apply it to weakly lower semicontinuous maps and obtain the generaliza-
tion of Theorem 1.2 and 1.3. In Section 4, Theorem 1.4 also be extended
to an almost lower semicontinuous map in an R-tree.

2. Preliminaries

A multimap (or map) F : X ( Y is a function from a set X into
the power set 2Y of Y ; that is, a function with the values F (x) ⊂ Y for
x ∈ X. For A ⊂ X, let F (A) =

⋃
{F (x) : x ∈ A}. Let and GrF

denote the closure and graph of F , respectively.

Let X be a topological space and (Y, d) be a metric space. A mul-
timap F : X ( Y is called;

(1) lower semicontinuous (lsc) at x ∈ X, if for each open set W with
W ∩F (x) 6= ∅, there is a neighborhood U(x) of x such that F (z)∩
W 6= ∅ for all z ∈ U(x).

(2) weakly lower semicontinuous (wlsc) [15] (or quasi lower semicon-
tinuous in [5, 6]) at x ∈ X, every neighborhood U(x) of x and
ε > 0, there is a point x′ ∈ U(x) such that for every point y ∈ F (x′)
there is a neighborhood Uy of x for which y ∈

⋂
z∈Uy

Bε(F (z)).

(3) quasi-lower semicontinuous (qlsc) at x ∈ X, if for each ε > 0,
there are y ∈ F (x) and a neighborhood U(x) of x such that F (z)∩
Bε(y) 6= ∅ for all z ∈ U(x).

(4) almost lower semicontinuous (alsc) at x ∈ X, if for each ε > 0,
there is a neighborhood U(x) of x such that

⋂
z∈U(x)Bε(F (z)) 6= ∅.

If F is lsc [wlsc, qlsc, alsc, respectively] at each x ∈ X, F is called lsc
[wlsc, qlsc, alsc, respectively]. Note that F is lsc at each x ∈ X if and
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only if for each y ∈ F (x) and ε > 0, there is a neighborhood U(x) of
x such that y ∈

⋂
z∈U(x)Bε(F (z)) ([4], Lemma 3.1). Therefore (1) =⇒

(2). Clearly (2) =⇒ (3) and (3) =⇒ (4) also holds, see [9].

Let X be a topological space and 〈X〉 denote the set of all nonempty
finite subsets of X. A C-structure on X is given by a map Γ : 〈X〉( X
such that

(1) for all A ∈ 〈X〉, ΓA = Γ(A) is nonempty and contractible; and
(2) for all A,B ∈ 〈X〉, A ⊂ B implies ΓA ⊂ ΓB.

A pair (X,Γ) is then called a C-space by Horvath [7] and an H-space by
Bardaro and Ceppitelli [1].

Any convex subset X of a topological vector space is a C-space (X,Γ)
by putting ΓA = coA, the convex hull of A. Other examples of (X,Γ) are
any convex space, any pseudo-convex space, any homeomorphic image
of a convex space, any contractible space, and so on. See [1, 7].

For an (X,Γ), a subset C of X is said to be Γ-convex (or a C-set) if
A ∈ 〈C〉 implies ΓA ⊂ C.

A C-space (X,Γ) is called an LC-metric space if X is equipped with a
metric d such that for any ε > 0, the set Bε(C) = {x ∈ X : d(x,C) < ε}
is Γ-convex whenever C ⊂ X is Γ-convex, and open balls are Γ-convex.
For details, see Horvath [7].

Note that each singletons are Γ-convex in LC-metric spaces ([9],
Lemma 5.4).

Let X be a topological space. If Z ⊂ X, then dimZX ≤ 0 means
that dimE ≤ 0 for every set E ⊂ Z which is closed in X [14].

Let X and Y be topological spaces. A map F : X ( Y has the
selection extension property provided that for each closed subset A of
X, every continuous selection for F |A extends to a continuous selection
for F . Here F |A denotes the restriction of F to A. A map F : X ( Y
has the one-point extension property provided that for each lsc map
L : X ( Y with L(z) ⊂ F (z) for all z ∈ X and for each (x, y) ∈
GrF\GrL, there is an lsc map L∗ : X ( Y such that (x, y) ∈ GrL∗ and

L(z) ⊂ L∗(z) ⊂ F (z)

for all z ∈ X.

3. Selections for weakly lower semicontinuous maps in LC-
metric spaces

We begin with the following basic facts about lsc maps in [13];
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Proposition 3.1. Let X be a topological space and (Y, d) be a com-
plete metric space.

(1) If F : X ( Y is lsc, so is F .
(2) If Gi : X ( Y is lsc for each i ∈ I, then

⋃
i∈I Gi is lsc, where

(
⋃
i∈I Gi)(x) :=

⋃
i∈I Gi(x).

(3) Let F : X ( Y be lsc, A be a nonempty closed subset of X, and
f : X → Y be a continuous function with f(x) ∈ F (x) for every
x ∈ A. Then the map G defined on X by

G(x) =

{
F (x) if x ∈ X\A,
{f(x)} if x ∈ A

is lsc.

We give a sufficient condition for a map to have a continuous selection
and the selection extension property;

Theorem 3.2. Let X be a paracompact space, (Y ; Γ) be a complete
LC-metric space, Z ⊂ X with dimXZ ≤ 0 and F : X ( Y be a map
with closed values such that F (x) is Γ-convex for x /∈ Z. Let F have
an lsc selection and the one-point extension property. Then F has a
continuous selection and the selection extension property.

Proof. (1) Define a map F0 : X ( Y by F0(x) =
⋃
{φ(x) : φ is an lsc

selection for F}. Since F has an lsc selection, F0(x) is nonempty for all
x ∈ X. F has closed values, so F 0 ⊂ F . By Proposition 3.1, F 0 is an
lsc selection of F . But F0 is a maximal lsc selection of F , so F0 = F 0.

Now we verify that F0(x) is Γ-convex for all x /∈ Z. Suppose F0(x) is
not Γ-convex for some x /∈ Z, i.e., ΓA\F0(x) 6= ∅ for some A ∈ 〈F0(x)〉.
Then there exists a y ∈ ΓA such that y /∈ F0(x). Since A ∈ 〈F0(x)〉 ⊂
〈F (x)〉 and F (x) is Γ-convex, y ∈ F (x). Thus (x, y) ∈GrF\ GrF0. Since
F has the one-point extension property, there is an lsc map F ∗0 : X ( Y
such that (x, y) ∈GrF ∗0 , and F0(z) ⊂ F ∗0 (z) ⊂ F (z) for all z ∈ X. This
contradicts the maximality of F0.

Therefore by Theorem 1.3, F0 has a continuous selection f : X → Y
which is a continuous selection of F .

(2) Let A be a closed subset of X and g : A → Y be a contin-
uous selection for F |A, then g(x) ∈ F0(x) for all x ∈ A. Otherwise
(x, g(x)) /∈Gr(F0) for some x ∈ A. Since F has the one-point extension
property, there is an lsc map F ∗0 : X ( Y such that (x, y) ∈GrF ∗0 , and
F0(z) ⊂ F ∗0 (z) ⊂ F (z) for all z ∈ X. This contradicts the maximality
of F0.
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Define Fg : X ( Y by

Fg(x) =

{
F0(x) if x ∈ X\A,
{g(x)} if x ∈ A.

Then by Proposition 3.1, Fg is lsc with closed values and Fg(x) is
Γ-convex for x /∈ Z. Therefore by Theorem 1.3, Fg has a continuous
selection f : X → Y which becomes a continuous selection of F and
extends g : A→ Y to X.

Remarks. 1. If F has a continuous selection f , then the map F0 :
X ( Y defined above is nonempty for all x ∈ X and a maximal lsc
selection of F . Therefore the following statements are equivalent;

(a) F has a continuous selection;
(b) F has a maximal lsc selection;
(c) F has an lsc selection.

2. Let Y be a Banach space, Z = ∅ and F0 be the lsc selection of F . Then
coF0 is also an lsc selection of F . Since F0 is a maximal lsc selection of
F , F0 =coF0. So the conclusion of Theorem 3.2 holds without assuming
the one-point extension property in this case.

Proposition 3.3. (Gutev [6]) Let X be a topological space, (Y, d)
be a complete metric space and F : X ( Y be a wlsc map with closed
values. Then F has an lsc selection.

Theorem 3.4. Let X be a paracompact space, (Y ; Γ) be a complete
LC-metric space and Z ⊂ X with dimXZ ≤ 0. Let F : X ( Y be
a wlsc map with closed values such that F (x) is Γ-convex for x /∈ Z
and F have the one-point extension property. Then F has a continuous
selection and the selection extension property.

Proof. Since F : X ( Y a wlsc map with closed values, F admits an
lsc selection, so by Theorem 3.2, the conclusion holds.

Remarks. 1. Note that if F : X ( Y is an lsc map with closed
values such that F (x) is Γ-convex for x /∈ Z, then F has the one-point
extension property. Indeed, for any lsc map L : X ( Y with L(z) ⊂
F (z) for all z ∈ X and (x, a) ∈ GrF\GrL, define F ∗ : X ( Y by

F ∗(z) =

{
F (x) if z 6= x,
{a} if z = x.

Then F ∗ is an lsc map with closed values such that F (x) is Γ-convex
for x /∈ Z by Proposition 3.1. By Theorem 1.3, F ∗ admits a continuous
selection g : X → Y . Define the map L∗ : X ( Y by L∗(z) :=
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L(z) ∪ {g(z)} for all x ∈ X. Then L∗ is lsc so, we have (x, a) ∈ GrL∗

and L(z) ⊂ L∗(z) ⊂ F (z) for all x ∈ X. For details, see Chu and Huang
[3].

Therefore Theorem 3.4 is a generalization of Theorem 1.3.
2. As we mentioned in Remarks after Theorem 3.2, if Y is a Banach
space and Z = ∅, then Theorem 3.4 becomes Theorem 1.2.

If Z = ∅, we obtain the following;

Corollary 3.5. Let X be a paracompact space, (Y ; Γ) be a com-
plete LC-metric space, and F : X ( Y be a wlsc map with closed
Γ-convex values. If F has the one-point extension property, then F has
a continuous selection and the selection extension property.

Remark. Corollary 3.5 generalize and extend Theorem 3.3 in Hor-
vath [7].

4. Selections for almost lower semicontinuous maps in R-
trees

A metric space (M,d) is said to be hyperconvex if⋂
α

B(xα, γα) 6= ∅

for any collection {B(xα, γα)} of closed balls in M for which d(xα, xβ) ≤
γα + γβ.

Horvath [8] showed that any hyperconvex metric space M is a com-
plete LC-metric space with ΓA =

⋂
{B : B is a closed ball containing A}

for each A ∈ 〈M〉. A Γ-convex subset of M is said to be sub-admissible.
An R-tree is a metric space (M,d) satisfying:
(i) There is a unique geodesic segment (denoted by [x, y]) joining each

pair of points x, y ∈M .
(ii) If x, y, z ∈M , then [x, y] ∩ [x, z]=[x,w] for some w ∈M .
(iii) If x, y, z ∈M , then [x, y] ∩ [y, z]= {y}, then [x, y] ∪ [y, z]=[x, z].
Note that a complete R-tree is hyperconvex [10].

Proposition 4.1. Let X be a topological space and Y be a metric
space. If a multimap F : X ( Y is alsc at x ∈ X, then F is qlsc at
x ∈ X.

Proof. For ε > 0, there is a neighborhood U(x) of x such that⋂
z∈U(x)

B(F (z), ε/2) 6= ∅.
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Select any y ∈
⋂
z∈U(x)B(F (z), ε/2). For each z ∈ U(x), choose yz ∈

F (z) such that d(y, yz) < ε/2. Note that yx ∈ F (x) and d(yx, yz) ≤
d(yx, y) + d(y, yz) < ε for each z ∈ U(x). Hence yz ∈ B(yx, ε)∩ F (z) for
all z ∈ U(x).

Combining Theorem 1.4 and Proposition 4.1, we have the following
result;

Theorem 4.2. Let X be a paracompact topological space, (M,d)
be a complete R-tree and F : X ( M be an alsc map with closed
sub-admissible values. Then F has a continuous selection.

A subset X of M is said to be convex if X includes every geodesic
segment joining any two of its points.

In an R-tree M , every closed ball contains the segment joining any
two of its points, so [x, y] ⊂

⋂
{B : B is a closed ball containing {x, y}}

for any x, y ∈M . Therefore a sub-admissible set in an R-tree is convex.
Note that F has sub-admissible but, not bounded values in Theorem

4.2. So Theorem 4.2 is comparable to the following Theorem in [12].

Theorem 4.3. Let X be a paracompact topological space, (M,d) be
a complete R-tree, and F : X (M be an alsc map with closed bounded
convex values. Then F has a continuous selection.
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