Experimental Section
Synthesis of Monomer. The organic linker CZ3-acid was synthesized by a method that was similar to that described in Ref. [28]. 1H-NMR (400 MHz, DMSO-d6, δ relative to (CH3)4Si): 1H-NMR (400 MHz, DMSO-d6) δ 8.11 (d, 4H, J = 7.6 Hz, C6H4), 7.61 (d, 4H, J = 8.0 Hz, C6H4), 7.36 (t, 4H, J = 15.2 Hz, C6H4), 7.29 (s, 2H, C6H2), 7.15 (t, 4H, J = 14.8 Hz, C6H4), 4.58 (t, 4H, J = 14.0 Hz, CH2), 3.99 (t, 4H, J = 10.8 Hz, CH2), 2.16 (t, 4H, J = 11.2 Hz, CH2).
Synthesis of Polymer. The metal coordination polymer was synthesized by a solvothermal reaction;15 the organic linker CZ3-acid (0.125 mmol, 0.0766 g) and Zn(NO3)2·6H2O (0.25 mmol, 0.0744 g) were added to a solvent mixture containing 2 mL of dimethylformamide (DMF) and 2 mL of ethanol, and heated to 100 °C for 1 day. Needle-like crystals were obtained. There were filtered and washed with DMF and acetone. The synthesis of metal coordination polymer was very sensitive to the ratio of solvent mixture and other experimental conditions and then easily formed another crystalline powders. The yield of [Zn(CZ3)(DMF)] phase is obtained up to 65%.
Crystal Structure Analysis: C41H37N3O7Zn, Mr =749.1, triclinic, space group P-1, a= 10.0375 (5) Å, b = 10.3460 (4) Å, c = 18.1680 (8) Å, α= 87.3327 (11)°, β = 83.8644 (12)°, γ = 77.4709 (13)°, V = 1830.70 (14) Å3, Z = 2, T = 290 (1) K, μ (Mo Ka) = 0.73 mm−1. Of 14369 reflections collected in the θ range 3.0o-25.0o using w scans on a Rigaku R-axis Rapid S diffractometer, 6423 were unique reflections (Rint = 0.028). The structure was solved and refined against F2 using SHELX-97,29 469 variables, R1 = 0.035 (Fo 2 > 2σ(Fo 2)), wR2= 0.108, GOF = 1.19, and max/min residual electron density 0.76/−0.96 eÅ−3. CCDC-950341.
References
- George, R. W.; Manner, I. Adv. Mater. 2007, 19, 3439. https://doi.org/10.1002/adma.200702876
- Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
- Kurth, D. G. Sci. Technol. Adv. Mater. 2008, 9, 014103. https://doi.org/10.1088/1468-6996/9/1/014103
- Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Angew. Chem. Int. Ed. 2002, 41, 3800. https://doi.org/10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3
- Yagi, O. M.; Li, Q. MRS Bull. 2009, 34, 682. https://doi.org/10.1557/mrs2009.180
- Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm 2012, 14, 3001. https://doi.org/10.1039/c2ce06488j
- Dobrawa, R.; Wurthner, F. Chem. Commun. 2002, 1878.
- Delgado, S.; Sanz Miguel, P. J.; Priego, J. L.; Jimenez-Aparicio, R.; Gomez-Garcia, C. J.; Zamora, F. Inorg. Chem. 2008, 47, 9128. https://doi.org/10.1021/ic801314s
- Li, Y.; Hao, N.; Lu, Y.; Wang, E.; Kang, Z.; Hu, C. Inorg. Chem. 2003, 42, 3119. https://doi.org/10.1021/ic026306j
- Lu, J. Y.; Lawandy, M. A.; Li, J. Inorg. Chem. 1999, 38, 2695. https://doi.org/10.1021/ic990243w
- Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
- Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876. https://doi.org/10.1021/ja0656853
- Eddaoudi, M. et al. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
- Grzesiak, A. L.; Uribe, F. J.; Ockwig, N. W.; Yaghi, O. M.; Matzger, A. J. Angew. Chem. Int. Ed. 2006, 45, 2553. https://doi.org/10.1002/anie.200504312
- Choi, E. Y.; Gao, C.; Lee, H. J.; Kwon, O. P.; Lee, S. H. Chem. Commun. 2009, 7563.
- Choi, E. Y.; Lee, H. J.; Gao, C.; Kwon, O. P.; Lee, S. H. Macromol. Chem. Phys. 2010, 211, 1955. https://doi.org/10.1002/macp.201000316
- Choi, E. Y.; Gao, C.; Lee, S. H.; Kwon, O. P. Bull. Korean Chem. Soc. 2012, 33, 1264. https://doi.org/10.5012/bkcs.2012.33.4.1264
- Choi, E. Y.; Lee, S. H.; Kwon, O. P. Bull. Korean Chem. Soc. 2012, 33, 2431. https://doi.org/10.5012/bkcs.2012.33.7.2431
- Ma, S.; Wang, X.; Yuan, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47, 4130. https://doi.org/10.1002/anie.200800312
- James, S. L. Chem. Soc. Rev. 2003, 32, 276. https://doi.org/10.1039/b200393g
- Sluis, P., Van. Der.; Spek, A. L. Acta Cryst. 1990, A46, 194.
- Wada, T.; Zhang, Y.; Choi, Y. S.; Sasabe, H. J. Phys. D: Appl. Phys. 1993, 26, B221. https://doi.org/10.1088/0022-3727/26/8B/037
- Yuan, M. S.; Zhaob, L.; Zhanga, R. R. Acta Cryst. 2010, E66, o1885.
- Trzaska, S. N.; Olbrich, F. Z. Kristallogr. NCS. 2008, 223, 457.
- Cui, J. L.; Duanb, M.; Caia, L. Q. Acta Cryst. 2009, E65, o216.
- Uludag, N.; Ates, M.; Tercan, B.; Ermis, E.; Hokelek, T. Acta Cryst. 2010, E66, o1077.
- Zhang, X. J.; Wu, J. Y.; Zhang, M. L.; Tian, Y. P. Trans. Met. Chem. 2003, 28, 707. https://doi.org/10.1023/A:1025466215283
- Kwon, O. P.; Kwon, S. J.; Jazbinsek, M.; Gunter, P. J. Chem. Phys. 2006, 124, 104705. https://doi.org/10.1063/1.2180768
- Sheldrick, G. M. Acta. Cryst. 2008, A64, 112