DOI QR코드

DOI QR Code

Single Crystals of a 2-Dimensional Metal Coordination Polymer Containing Pendant Carbazole Groups

  • Choi, Eun-Young (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Sang-Beom (Department of Molecular Science and Technology, Ajou University) ;
  • Yun, Hoseop (Department of Chemistry & Division of Energy Systems Research, Ajou University) ;
  • Lee, Suck-Hyun (Department of Molecular Science and Technology, Ajou University) ;
  • Gao, Chunji (Department of Molecular Science and Technology, Ajou University) ;
  • Shin, Youngmu (Korea Science Academy of KAIST) ;
  • Kwon, O-Pil (Department of Molecular Science and Technology, Ajou University)
  • Received : 2013.08.20
  • Accepted : 2013.09.25
  • Published : 2013.12.20

Abstract

Keywords

Experimental Section

Synthesis of Monomer. The organic linker CZ3-acid was synthesized by a method that was similar to that described in Ref. [28]. 1H-NMR (400 MHz, DMSO-d6, δ relative to (CH3)4Si): 1H-NMR (400 MHz, DMSO-d6) δ 8.11 (d, 4H, J = 7.6 Hz, C6H4), 7.61 (d, 4H, J = 8.0 Hz, C6H4), 7.36 (t, 4H, J = 15.2 Hz, C6H4), 7.29 (s, 2H, C6H2), 7.15 (t, 4H, J = 14.8 Hz, C6H4), 4.58 (t, 4H, J = 14.0 Hz, CH2), 3.99 (t, 4H, J = 10.8 Hz, CH2), 2.16 (t, 4H, J = 11.2 Hz, CH2).

Synthesis of Polymer. The metal coordination polymer was synthesized by a solvothermal reaction;15 the organic linker CZ3-acid (0.125 mmol, 0.0766 g) and Zn(NO3)2·6H2O (0.25 mmol, 0.0744 g) were added to a solvent mixture containing 2 mL of dimethylformamide (DMF) and 2 mL of ethanol, and heated to 100 °C for 1 day. Needle-like crystals were obtained. There were filtered and washed with DMF and acetone. The synthesis of metal coordination polymer was very sensitive to the ratio of solvent mixture and other experimental conditions and then easily formed another crystalline powders. The yield of [Zn(CZ3)(DMF)] phase is obtained up to 65%.

Crystal Structure Analysis: C41H37N3O7Zn, Mr =749.1, triclinic, space group P-1, a= 10.0375 (5) Å, b = 10.3460 (4) Å, c = 18.1680 (8) Å, α= 87.3327 (11)°, β = 83.8644 (12)°, γ = 77.4709 (13)°, V = 1830.70 (14) Å3, Z = 2, T = 290 (1) K, μ (Mo Ka) = 0.73 mm−1. Of 14369 reflections collected in the θ range 3.0o-25.0o using w scans on a Rigaku R-axis Rapid S diffractometer, 6423 were unique reflections (Rint = 0.028). The structure was solved and refined against F2 using SHELX-97,29 469 variables, R1 = 0.035 (Fo 2 > 2σ(Fo 2)), wR2= 0.108, GOF = 1.19, and max/min residual electron density 0.76/−0.96 eÅ−3. CCDC-950341.

References

  1. George, R. W.; Manner, I. Adv. Mater. 2007, 19, 3439. https://doi.org/10.1002/adma.200702876
  2. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
  3. Kurth, D. G. Sci. Technol. Adv. Mater. 2008, 9, 014103. https://doi.org/10.1088/1468-6996/9/1/014103
  4. Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Angew. Chem. Int. Ed. 2002, 41, 3800. https://doi.org/10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3
  5. Yagi, O. M.; Li, Q. MRS Bull. 2009, 34, 682. https://doi.org/10.1557/mrs2009.180
  6. Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm 2012, 14, 3001. https://doi.org/10.1039/c2ce06488j
  7. Dobrawa, R.; Wurthner, F. Chem. Commun. 2002, 1878.
  8. Delgado, S.; Sanz Miguel, P. J.; Priego, J. L.; Jimenez-Aparicio, R.; Gomez-Garcia, C. J.; Zamora, F. Inorg. Chem. 2008, 47, 9128. https://doi.org/10.1021/ic801314s
  9. Li, Y.; Hao, N.; Lu, Y.; Wang, E.; Kang, Z.; Hu, C. Inorg. Chem. 2003, 42, 3119. https://doi.org/10.1021/ic026306j
  10. Lu, J. Y.; Lawandy, M. A.; Li, J. Inorg. Chem. 1999, 38, 2695. https://doi.org/10.1021/ic990243w
  11. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
  12. Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876. https://doi.org/10.1021/ja0656853
  13. Eddaoudi, M. et al. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
  14. Grzesiak, A. L.; Uribe, F. J.; Ockwig, N. W.; Yaghi, O. M.; Matzger, A. J. Angew. Chem. Int. Ed. 2006, 45, 2553. https://doi.org/10.1002/anie.200504312
  15. Choi, E. Y.; Gao, C.; Lee, H. J.; Kwon, O. P.; Lee, S. H. Chem. Commun. 2009, 7563.
  16. Choi, E. Y.; Lee, H. J.; Gao, C.; Kwon, O. P.; Lee, S. H. Macromol. Chem. Phys. 2010, 211, 1955. https://doi.org/10.1002/macp.201000316
  17. Choi, E. Y.; Gao, C.; Lee, S. H.; Kwon, O. P. Bull. Korean Chem. Soc. 2012, 33, 1264. https://doi.org/10.5012/bkcs.2012.33.4.1264
  18. Choi, E. Y.; Lee, S. H.; Kwon, O. P. Bull. Korean Chem. Soc. 2012, 33, 2431. https://doi.org/10.5012/bkcs.2012.33.7.2431
  19. Ma, S.; Wang, X.; Yuan, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47, 4130. https://doi.org/10.1002/anie.200800312
  20. James, S. L. Chem. Soc. Rev. 2003, 32, 276. https://doi.org/10.1039/b200393g
  21. Sluis, P., Van. Der.; Spek, A. L. Acta Cryst. 1990, A46, 194.
  22. Wada, T.; Zhang, Y.; Choi, Y. S.; Sasabe, H. J. Phys. D: Appl. Phys. 1993, 26, B221. https://doi.org/10.1088/0022-3727/26/8B/037
  23. Yuan, M. S.; Zhaob, L.; Zhanga, R. R. Acta Cryst. 2010, E66, o1885.
  24. Trzaska, S. N.; Olbrich, F. Z. Kristallogr. NCS. 2008, 223, 457.
  25. Cui, J. L.; Duanb, M.; Caia, L. Q. Acta Cryst. 2009, E65, o216.
  26. Uludag, N.; Ates, M.; Tercan, B.; Ermis, E.; Hokelek, T. Acta Cryst. 2010, E66, o1077.
  27. Zhang, X. J.; Wu, J. Y.; Zhang, M. L.; Tian, Y. P. Trans. Met. Chem. 2003, 28, 707. https://doi.org/10.1023/A:1025466215283
  28. Kwon, O. P.; Kwon, S. J.; Jazbinsek, M.; Gunter, P. J. Chem. Phys. 2006, 124, 104705. https://doi.org/10.1063/1.2180768
  29. Sheldrick, G. M. Acta. Cryst. 2008, A64, 112