References
- C. Dekker, "Solid-State Nanopores," Naute Nanotechnol., vol. 2, Apr. 2007, pp. 209-215. https://doi.org/10.1038/nnano.2007.27
- J. Fu, P. Mao, and J. Han, "Artificial Molecular Sieves and Filters: A New Paradigm for Biomolecule Separation," Trend in Biotechnology, vol. 26, no. 6, Apr. 2008, pp. 311-320. https://doi.org/10.1016/j.tibtech.2008.02.009
- R. Reis and A. Zydney, "Membrane Separations in Biotechnology," Current Opinion Biotechnol., vol. 12, 2001, pp. 208-211. https://doi.org/10.1016/S0958-1669(00)00201-9
- J. Li et al., "Nanoscale Ion Beam Sculpting," Nature, vol. 412, no. 166, July 2001, pp. 166-169. https://doi.org/10.1038/35084037
- T. Xu et al., "A Cancer Detection Platform Which Measures Telemerase Activity from Live Circulating Tumor Cells Captures on a Microfilter," Cancer Research, vol. 70, no. 16, Aug. 2010, pp. 6420-6426. https://doi.org/10.1158/0008-5472.CAN-10-0686
- C.J.M. Rijn, G.J. Veldhuis, and S. Kuiper, "Nanosieve with Microsystem Technology for Microfilteration Applications," Nanotechnol., vol. 9, Feb. 1998, pp. 343-345. https://doi.org/10.1088/0957-4484/9/4/007
- X. Yang et al., "Micromachined Membrane Particle Filters," Sensors and Actuators, vol. 73, Jan. 1999, pp. 184-191. https://doi.org/10.1016/S0924-4247(98)00269-6
- H.D. Tong et al., "Silicon Nitride Nanosieve Membrane," Nano Lett., vol. 4, no. 2, Feb. 2004, pp. 283-287. https://doi.org/10.1021/nl0350175
- S.H. Ma et al., "An Endothelial and Astrocyte Co-culture Model of the Blood-Brain Barrier Utilizing an Ultra-thin, Nanofabricated Silicon Nitride Membrane," Lab on a Chip, vol. 5, Jan. 2005, pp. 74-85. https://doi.org/10.1039/b405713a
- M.J.K. Klein et al., "SiN Membranes with Submicrometer Hole Arrays Patterned by Wafer-Scale Nanosphere Lithography," J. Vacuum Sci. Technol. B:Microelectron. Nanometer Structures, vol. 29, no. 2, Feb. 2011, pp. 021012-1-5. https://doi.org/10.1116/1.3554404
- A.A. Patel and H.I. Smith,"Membrane Stacking: A New Approach for Three-Dimensional Nanostructure Fabrication," J. Vacuum Sci. Technol. B:Microelectron. Nanometer Structures, vol. 25, no. 6, June 2005, pp. 2662-2664.
- S. Habermehl, "Stress Relaxation in Si-Rich Silicon Nitride Thin Films," J. Appl. Physics, vol. 83, no. 9, May 1998, pp. 4672-4677. https://doi.org/10.1063/1.367253
- J.G.E. Gardeniers and H.A.C. Tilmans, "LPCVD Silicon-Rich Silicon Nitride Films for Applications in Micromechanics," J. Vacuum Sci. Technol. A, vol. 14, no. 5, Sept. 1996, pp. 2879- 2892. https://doi.org/10.1116/1.580239
- P.T.Boyer, L.Jalabert, and L.Masarotto, "Properties of Nitrogen Doped Silicon Films Deposited by Low-Pressure Chemical Vapor Deposition from Silane and Ammonia," J. Vacuum Sci. Technol. A, vol. 18, no. 5, Sept. 2000, pp. 2389-2393. https://doi.org/10.1116/1.1286714
- G.T.A. Kovacs, Micromachined Transducers Sourcebook, NY, US:WCB/McGraw-Hill, 1998.
- W.S. Lau, S.J. Fonash, and J. Kanicki, "Stability of Electrical Properties of Nitrogen-Rich, Silicon-Rich, Stoichiometric Silicon Nitride Films," J. Appl. Physics, vol. 66, no. 6, Sept. 1989, pp. 2765-2767. https://doi.org/10.1063/1.344202
-
S.H. Hong et al., "Improvement of the Current-Voltage Characteristics of a Tunneling Dielectric by Adopting a
$Si_3N_4/SiO_2/Si_3N_4$ Multilayer for Flash Memory Application," Appl. Physics Lett., vol. 87, no. 15, Oct. 2005, pp.152106-1-3. https://doi.org/10.1063/1.2093932 - A.J. Storm et al., "Fabrication of Solid-State Nanopores with Single-Nanometre Precision," Nature Materials, vol. 2, Aug. 2003, pp. 537-540. https://doi.org/10.1038/nmat941
-
C. Rossi, P.T. Boyer, and D. Esteve, "Realization and Performance of Thin
$SiO_2/SiNx$ Membrane for Microheater Applications," Sensors and Actuators A, vol. 64, no. 3, Jan. 1998, pp. 241-245. https://doi.org/10.1016/S0924-4247(97)01627-0 -
M.Y. Wu et al., "Formation of Nanopores in a
$SiN/SiO_2$ Membrane with an Electron Beam," Appl. Physics Lett., vol. 87, no. 11, Sept. 2005, pp.113106-1-3. https://doi.org/10.1063/1.2043247 - C. Mastrangelo, and W. Tang, "Semiconductor Sensor Technologies," Semiconductor Sensors, S. Sze (Ed.), Wiley, 1994, pp. 17-95.
- H. Low, M. Tse, and M. Chiu, "Thermal Induced Stress on the Membrane in Integrated Gas Sensor with Micro-heater," Proc. IEEE Hong Kong Electron Devices Meeting, 1998, pp.140-143.
- D.S. Lee et al., "Bulk-Micromachined Submicroliter-Volume PCR Chip with Very Rapid Thermal Response and Low Power Consumption," Lab on a Chip, Mar. 2004, pp. 401-407.
- D.S. Lee et al., "A Temperature-Controllable Microelectrode and Its Application to Protein Immobilization," ETRI J., vol. 29, no. 5, Oct. 2007, pp. 667-669. https://doi.org/10.4218/etrij.07.0207.0035
- S. Hattori et al., "Structure and Mechanism of Two Types of Micro-pump Using Polymer Gel," Proc. MEMS, 1992, pp. 110- 115.
- V. VanDelinder and A. Groisman, "Separation of Plasma from Whole Human Blood in a Continuous Cross-Flow in a Molded Microfluidic Device," Analytic Chemistry, vol. 78, June 2006, pp. 3765-3771. https://doi.org/10.1021/ac060042r
- J. Sambrook and D.W. Russell, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.
- Y.H. Choi, S.S. Lee, and K.W. Chung, "Microfluidic Actuation and Sampling by Dehydration of Hydrogel," Biochip J., vol. 4, no. 1, Apr. 2010, pp. 63-69. https://doi.org/10.1007/s13206-010-4110-3
- D. Erickson et al., "Nanobiosensors: Optofluidic, Electrical and Mechanical Approaches to Biomolecular Detecton at the Nanoscale," Microfluid Nanofluidics, vol. 4, no. 1, Sept. 2008, pp. 33-52. https://doi.org/10.1007/s10404-007-0198-8
- G.A.Urban and T.Weiss, "Hydrogel for Biosensors," Hydrogel Sensors and Actuators, Springer Series on Chemical Sensors and Biosensors 6, S. Gerlach and K.-F. Arndt (Eds.), Springer-Verlag, Berlin, 2009.
-
N. Massad-lvanir et al., "Construction and Characterization of Porous
$SiO_2$ /Hydrogel Hybrids as Optical Biosensors for Rapid Detection of Bacteria," Adv. Functional Materials, vol. 20, June 2010, pp. 2269-2277. https://doi.org/10.1002/adfm.201000406 - H. Uehara et al., "Size-Selective Diffusion in Nanoporous but Flexible Membrane for Glucose Sensors," ACS Nano, vol. 3, no. 4, Mar. 2009, pp. 924-932. https://doi.org/10.1021/nn8008728
- S. Howorka and Z. Siwy, "Nanopore Analytics: Sensing of Single Molecules," Chem Soc Rev, vol. 38, June 2009, pp. 2360-2384. https://doi.org/10.1039/b813796j
- P. Wang et al., "Cell-Based Biosensors and Its Applications in Biomedicine," Sens Actuators B:Chem, vol. 108, July 2005, pp. 576-584. https://doi.org/10.1016/j.snb.2004.11.056
- Z. Wang et al., "High-Density Microfluidic Arrays for Cell Cytotoxicity Analysis,"Lab Chip, vol. 7, Apr. 2007, pp. 740-745. https://doi.org/10.1039/b618734j
Cited by
- Micro-scale blood plasma separation: from acoustophoresis to egg-beaters vol.13, pp.17, 2013, https://doi.org/10.1039/c3lc50432h
- A surface-micromachined capacitive microphone with improved sensitivity vol.23, pp.5, 2012, https://doi.org/10.1088/0960-1317/23/5/055018
- Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device vol.14, pp.16, 2012, https://doi.org/10.1039/c4lc00343h
- High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device vol.4, pp.63, 2012, https://doi.org/10.1039/c4ra06513a
- Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing vol.19, pp.5, 2012, https://doi.org/10.1117/1.jbo.19.5.051211
- Microdevice for Separation of Circulating Tumor Cells Using Embedded Magnetophoresis with V-shaped Ni-Co Nanowires and Immuno-nanomagnetic Beads vol.37, pp.2, 2012, https://doi.org/10.4218/etrij.15.0114.0572
- Passive blood plasma separation at the microscale: a review of design principles and microdevices vol.25, pp.8, 2012, https://doi.org/10.1088/0960-1317/25/8/083001
- A concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm MEMS acoustic sensor based on a polyimide sacrificial layer vol.25, pp.12, 2015, https://doi.org/10.1088/0960-1317/25/12/125022
- Characterization of thermoplastic microfiltration chip for the separation of blood plasma from human blood vol.10, pp.5, 2012, https://doi.org/10.1063/1.4964388