DOI QR코드

DOI QR Code

200℃ 이하 저온 공정으로 제조된 다기능 실리콘 질화물 박막의 조성이 전기적 특성에 미치는 영향

Effect of Composition on Electrical Properties of Multifunctional Silicon Nitride Films Deposited at Temperatures below 200℃

  • 금기수 (서울시립대학교 나노과학기술학과) ;
  • 황재담 (서울시립대학교 나노과학기술학과) ;
  • 김주연 (서울시립대학교 물리학과) ;
  • 홍완식 (서울시립대학교 나노과학기술학과)
  • Keum, Ki-Su (Department of Nano Science and Technology, University of Seoul) ;
  • Hwang, Jae Dam (Department of Nano Science and Technology, University of Seoul) ;
  • Kim, Joo Youn (Department of Physics, University of Seoul) ;
  • Hong, Wan-Shick (Department of Nano Science and Technology, University of Seoul)
  • 투고 : 2011.11.16
  • 발행 : 2012.05.25

초록

Electrical properties as a function of composition in silicon nitride ($SiN_x$) films grown at low temperatures ($<200^{\circ}C$) were studied for applications to photonic devices and thin film transistors. Both silicon-rich and nitrogen-rich compositions were successfully produced in final films by controlling the source gas mixing ratio, $R=[(N_2\;or\;NH_3)/SiH_4]$, and the RF plasma power. Depending on the film composition, the dielectric and optical properties of $SiN_x$ films varied substantially. Both the resistivity and breakdown field strength showed the maximum value at the stoichiometric composition (N/Si = 1.33), and degraded as the composition deviated to either side. The electrical properties degraded more rapidly when the composition shifted toward the silicon-rich side than toward the nitrogen-rich side. The composition shift from the silicon-rich side to the nitrogen-rich side accompanied the shift in the photoluminescence characteristic peak to a shorter wavelength, indicating an increase in the band gap. As long as the film composition is close to the stoichiometry, the breakdown field strength and the bulk resistivity showed adequate values for use as a gate dielectric layer down to $150^{\circ}C$ of the process temperature.

키워드

참고문헌

  1. W. A. MacDonald, J. Mater. Chem. 14, 299 (2004). https://doi.org/10.1039/b311611e
  2. H. Gleskova, S. Wagner, V. Gasparik, and P. Kovac. Appl. Surf. Sci. 175, 12 (2001).
  3. A. J. Nozik, Phys E, 14, 115 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0
  4. G. N. Parsons, J. H. Souk, and J. Batey, J. Appl. Phys, 70, 1553 (1991). https://doi.org/10.1063/1.349544
  5. A. Sazonov, A. Nathan, and L. D. Bogomolova. J. Noncrystalline Solids. 299, 1360 (2002).
  6. J. J. Huang, C. J. Liu, H. C. Lin, C. J. Tsai, Y. P. Chen, G. R. Hu and C. C. Lee, J. Phy D:Appl. Phys. 41, 245502 (2008). https://doi.org/10.1088/0022-3727/41/24/245502
  7. S. Ali, M. Gharghi, S. Sivoththaman. J. Mater. Sci. 40, 1469 (2005). https://doi.org/10.1007/s10853-005-0585-z
  8. Lucovsky, G. Richard, P. D. Tsu, D. V. Lin, and S. Y. Markunas, J. Vaccum Sci & Tech. 4. 681 (2009).
  9. V. D. Ven, E. P. Connick, and I. W. Harrus, A. S. 7th international IEEE conf. Santa clara, pp.194-201, CA, USA (2002).
  10. V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. v. d. Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, Thin Solid Films. 517, 3499 (2009). https://doi.org/10.1016/j.tsf.2009.01.065
  11. A. Aydinli, A. Serpenguzel, and D. Vardar, Solid State Communications 98, 273 (1995).
  12. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 6534 (1995). https://doi.org/10.1063/1.359062