• Title/Summary/Keyword: adhesives

Search Result 898, Processing Time 0.031 seconds

Effect of Combined Environmental Factors on Adhesive Shear Strengths and Chemical Structures of Adhesives (복합적 환경인자의 영향에 의한 접착제의 접착전단강도 및 화학구조 변화)

  • Hwang, Young-Eun;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Adhesive shear strengths of the established adhesives and the alternative adhesives were evaluated and their chemical structures were analyzed in order to investigate the possibility of replacing the established adhesives with the alternative adhesives applicable to the seeker for the guided missiles. Two types of the adhesives such as the structural adhesives and the sealant adhesives were considered. Those adhesives were exposed to the combined environmental factors consisting of temperature, moisture and ultraviolet over 1000 hours. Adhesive shear test was conducted to evaluate adhesive shear strengths and ATR FT-IR was utilized to investigate chemical structures. According to the results, the adhesive shear strengths of the alternative adhesives revealed higher than those of the established adhesives. Also the alternative adhesives were more stable to the combined environmental condition than the established adhesives. Therefore, it is found that the established adhesives were able to be replaced by the alternative adhesives.

Natural Adhesives from Agricultural By-products: A Review

  • Kim, Min-Hyeok;Kim, Hye-Been;Cheong, Kyu-Min;Seo, Yu-Ri;Lim, Ki-Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.111-111
    • /
    • 2017
  • There still exist adhesives that have toxic compounds or consist of those materials in both our life and lots of industries. For instance, formaldehyde adhesive had been still used for woodworking and some medical adhesives had been considered as toxicity problems. In this situation, natural adhesives from raw materials have been suggested as an one of considerable interests. Natural adhesives in recent have been reported fabrication methods via biological materials such as proteins, celluloses, and starches. By-products derived from agricultural something have them richly and each has additional special properties. Using these properties to make natural adhesives, unique adhesives would be attained. In particular, rice-based adhesive is such a good example. Rice-based by-product adhesives have interestingly some pros pertaining to high adhesive strength, excellent water resistance and could dramatically be reduced a formaldehyde a harmful component of plywood. Hence, rice-based adhesive like glues could be applied to lots of industries including agricultural and biological technology. This review paper highlighted some recent development on natural adhesives as a promising biomaterial for agricultural and biological technology fields. The design of agricultural by-product-based natural adhesives were described to demonstrate the application of agricultural and biological technology

  • PDF

Degradation Characteristics of Structural Adhesives (구조용 접착제의 열화 특성 연구)

  • Hwang, Young-Eun;Oh, Jin-Oh;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.443-446
    • /
    • 2009
  • In this study, a series of degradation test for structural adhesives was performed to investigate the possibility of replacement of the alternative adhesives to the conventional adhesives. Four types of the adhesives were exposed to combined environmental conditions over 1000 hours at an accelerated aging tester, which can simulate natural weather conditions such temperature, moisture and ultraviolet. Mechanical and chemical properties of the adhesives were evaluated through material testing system and FT/IR spectrometer. According to the results, the conventional adhesives can be replaced by the alternative adhesives because the alternative adhesives were more stable to environmental conditions rather than the conventional adhesives.

  • PDF

The influence of nanofillers on the properties of ethanol-solvated and non-solvated dental adhesives

  • da Cruz, Leonardo Bairrada Tavares;Oliveira, Marcelo Tavares;Saraceni, Cintia Helena Coury;Lima, Adriano Fonseca
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.28.1-28.10
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the influence of different concentrations of nanofillers on the chemical and physical properties of ethanol-solvated and non-solvated dental adhesives. Materials and Methods: Eight experimental adhesives were prepared with different nanofiller concentrations (0, 1, 2, and 4 wt%) and 2 solvent concentrations (0% and 10% ethanol). Several properties of the experimental adhesives were evaluated, such as water sorption and solubility (n = 5, 20 seconds light activation), real-time degree of conversion (DC; n = 3, 20 and 40 seconds light activation), and stability of cohesive strength at 6 months (CS; n = 20, 20 seconds light activation) using the microtensile test. A light-emitting diode (Bluephase 20i, Ivoclar Vivadent) with an average light emittance of $1,200mW/cm^2$ was used. Results: The presence of solvent reduced the DC after 20 seconds of curing, but increased the final DC, water sorption, and solubility of the adhesives. Storage in water reduced the strength of the adhesives. The addition of 1 wt% and 2 wt% nanofillers increased the polymerization rate of the adhesives. Conclusions: The presence of nanofillers and ethanol improved the final DC, although the DC of the solvated adhesives at 20 seconds was lower than that of the non-solvated adhesives. The presence of ethanol reduced the strength of the adhesives and increased their water sorption and solubility. However, nanofillers did not affect the water sorption and strength of the tested adhesives.

Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives

  • Park, Byung-Dae;Kim, Jae-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • This study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermomechanical curing of UF resin adhesives with different F/U mole ratios. Thermomechanical curing of these UF resin adhesives was characterized using parameters of dynamic mechanical analysis (DMA) such as the gel temperature, maximum storage modulus, and peak temperatures of storage and loss modulus. As the F/U mole ratio decreased, the gel temperature of UF resin adhesives increased. The maximum storage modulus as an indicator of the rigidity of UF resin adhesives decreased with decreasing F/U mole ratio. The peak temperature of tan $\delta$ increased with decreasing F/U mole ratio, indicating that the vitrification occurred faster for high F/U mole ratio of UF resin adhesives than for the one of lower F/U mole ratio. These results partially explained the reason why UF resin adhesives with lower F/U mole ratio resulted in relatively poor adhesion performance when they were applied.

Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile (차체 강성해석을 위한 구조용 접착제 해석모델링 연구)

  • Seo, Seong-Hoon;Joo, Jae-Kap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Preparation and Bonding Properties of Natural Garlic Adhesives for Wallpaper (벽지용 천연마늘접착제의 제조 및 접착성능)

  • Roh, Jeongkwan;Lee, Jinwha
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.125-132
    • /
    • 2011
  • As the enhancement of indoor air quality is increasingly compelling the use of natural materials without any emission, this study reports the preparation and performance of natural garlic adhesives for wallpaper. The natural garlic adhesives were successfully prepared by the extraction of the clove of raw garlic with water to isolate carbohydrates and proteins. Properties of the prepared garlic adhesives such as the non volatile solids content, viscosity, density, and pH were 62%, 2,789 mPa.s, $1.3g/cm^3$, and 6.6, respectively. The non-volatile solids content has a great impact on the adhesion performance of the prepared garlic adhesives, which was adequate about 60%. Bonding strength of prepared garlic adhesives was greater than the requirement of a Korean standard for wallpaper. In addition, the garlic adhesives showed antibacterial activity inheriting from the garlic. It is expected that the prepared garlic adhesives could be used as safe and natural adhesives without emitting any volatile organic compounds and formaldehyde gas.

Recent Advances and Trends in Reactive Polyurethane Adhesives

  • Krebs, Michael
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.53-59
    • /
    • 2006
  • The paper highlights technical advances and introduces recent innovations such as smart curing laminating adhesives for flexible packaging with low migration rates of aromatic isocyanates and amines. Latent reactive one-part systems on the basis of surface deactivated solid isocyanates open up new dimensions for heat setting adhesives and waterborne PU dispersions. The new generation of Purmelt Micro Emission adhesives contains less than 0.1% of MDI monomer, thereby drastically reducing the emission of hazardous isocyanate vapors during processing and setting a significantly improved technical standard in occupational safety. Once again, polyurethane adhesives have demonstrated their unique ability to adapt to new process, product, safety and environmental requirements.

  • PDF

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.