DOI QR코드

DOI QR Code

고희석 SiH4 가스를 이용하여 증착한 저온 PECVD 실리콘 질화물 박막의 기계적, 전기적 특성연구

Characteristics of Low Temperature SiNx Films Deposited by Using Highly Diluted Silane in Nitrogen

  • 노길선 (서울시립대학교 나노과학기술학과) ;
  • 금기수 (서울시립대학교 나노과학기술학과) ;
  • 홍완식 (서울시립대학교 나노과학기술학과)
  • No, Kil-Sun (Department of Nano Science and Technology, University of Seoul) ;
  • Keum, Ki-Su (Department of Nano Science and Technology, University of Seoul) ;
  • Hong, Wan-Shick (Department of Nano Science and Technology, University of Seoul)
  • 투고 : 2011.12.16
  • 발행 : 2012.08.25

초록

We report on electrical and mechanical properties of silicon nitride ($SiN_x$) films deposited by a plasma enhanced chemical vapor deposition (PECVD) method at $200^{\circ}C$ from $SiH_4$ highly diluted in $N_2$. The films were also prepared from $SiH_4$ diluted in He for comparison. The $N_2$ dilution was also effective in improving adhesion of the $SiN_x$ films, fascilitating construction of thin film transistors (TFTs). Metal-insulator-semiconductor (MIS) and Metal-insulator-Metal (MIM) structures were used for capacitance-voltage (C-V) and current-voltage (I-V) measurements, respectively. The resistivity and breakdown field strength of the $SiN_x$ films from $N_2$-diluted $SiH_4$ were estimated to be $1{\times}10^{13}{\Omega}{\cdot}cm$, 7.4 MV/cm, respectively. The MIS device showed a hysteresis window and a flat band voltage shift of 3 V and 0.5 V, respectively. The TFTs fabricated by using these films showed a field-effect mobility of $0.16cm^2/Vs$, a threshold voltage of 3 V, a subthreshold slope of 1.2 V/dec, and an on/off ratio of > $10^6$.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부, 교육과학기술부

참고문헌

  1. C. H. Lee, D. Striakhilev, and A. Nathan, IEEE Trans. Electron Devices 54, 1 (2007). https://doi.org/10.1109/TED.2006.889267
  2. C. S. Yang, L. L. Smith, C. B. Artur, and G. Parsons, J. Vac. Sci. Tech. B18, 683 (2000).
  3. J. G. Kim, Z. T. Park, Y. S. Choi, J. H. Boo, and Y. J. Yu, J. Kor. Inst. Met. & Mater. 41, 6 (2003).
  4. K. S. Keum, J. D. Hwang, J. Y. Kim, and W. S. Hong, Korean J. Met. Mater. 50, 331 (2012). https://doi.org/10.3365/KJMM.2012.50.4.331
  5. H. Uchida, K. Takechi, S. Nishida, and S. Kaneko, Japan. J. Appl. Phys. 30, 3691 (1991). https://doi.org/10.1143/JJAP.30.3691
  6. I. Kobayashi, T. Ogawa, and S. Hotta, Japan. J. Appl. Phys. 31, 336 (1992). https://doi.org/10.1143/JJAP.31.336
  7. A. Sazonov, D. Stryahilev, A. Nathan, and D. Bogomolova, J. Non-Cryst. Solids 1360, 299 (2002).
  8. K. J. Park and N. Gregory. J. Parsons, Vac. Sci. Technol. A22, 6 (2004).
  9. D. L. Smith, A. S. Alimonda, J. Von, and P. Frederick, J. Vac. Sci. Technol. B8, 551 (1990).
  10. D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, J. Electrochem. Soc. 137, 614 (1990). https://doi.org/10.1149/1.2086517
  11. A. Sazonov, A. Nathan, and D. Striakhilev, J. Non-Cryst. Solids 1329, 266 (2000).
  12. S. Sitbon, M. C. Hugon, B. Agius, F. Abel, J. L. Courant, and M. Puech, J. Vac. Sci. Technol. A13, 2900 (1995).
  13. K. Allaert, A. Van Calster, H. Loos, and A. Lequesne, J. Electrochem. Soc. 132, 1763 (1985). https://doi.org/10.1149/1.2114207
  14. F. Delmotte, M. C. Hugon, B. Agiusa, and J. L. Courant, J. Vac. Sci. Technol. 15, 1919 (1997). https://doi.org/10.1116/1.589579
  15. M. J. Loboda and J. A. Seifferly, J. Mater. Res. 11, 391 (1996). https://doi.org/10.1557/JMR.1996.0048
  16. S. M. Sze, Physics of Semiconductor Devices 2nd Wiley New York (1981).